Check out our science

Discover the stories of researchers at the
Faculty of Mechanical, Maritime and Materials Engineering.

Mechatronica 2.0: duurzame vorm van alles-in-een

Nederland is goed in mechatronica, het multidisciplinaire veld dat draait om geïntegreerde mechanische systemen die hun werk doen door een slimme combinatie van sensoren, actuatoren en regeltechniek. Prof.dr.ir. Just Herder, hoogleraar Interactieve Mechanismen en Mechatronica en kersverse voorzitter van de Afdeling Precision and Microsystems Engineering aan de TU Delft, kijkt graag verder, naar wat in de wandelgangen ‘mechatronica 2.0’ wordt genoemd. Waar mechatronische onderdelen traditioneel los van elkaar staan, probeert Herder ze verregaand met elkaar te integreren. “Het kan kleiner en preciezer, en met minder materiaal -en energieverbruik”. Crowdsurfen “Waarom heeft een mobiele telefoon aparte onderdelen om met nullen en enen om te gaan, om de buitenwereld af te tasten, en om een trilsignaal af te geven?” vraagt Herder. Zijn onderzoeksgroep probeert de uiteenlopende functies van mechanische systemen op slimme wijze met elkaar te integreren. Een belangrijk voordeel van deze benadering is dat het zich beter leent voor miniaturisatie. En zo is Herder beland in de wondere wereld van de nanotechnologie. “Als we steeds kleinere computerchips willen maken, zullen de apparaten die dat doen ook steeds preciezer moeten worden, zonder dat hun energieverbruik explodeert.” Herder schetst een stip aan de horizon van zijn vakgebied: “Nu chips met een nauwkeurigheid van miljoensten millimeters (de schaal van de nanometer) worden gefabriceerd, moeten we ook nadenken over vervormingen op nanoschaal in de bewegende houder die de chip tijdens het fabricageproces van A naar B verplaatst. Een actieve actuatorlaag tussen houder en chip kan vervormingen op nanometerschaal in de houder compenseren, om zo de chip te beschermen. Maar kunnen we de houder ook helemaal vervangen door duizenden minuscule vingers, die de chip met de grootst mogelijk precisie laten crowdsurfen? Misschien kunnen die vingers ondertussen de chip ook inspecteren.” Het fabriceren en aansturen van dergelijke slimme vingers is bij uitstek een uitdaging voor de nieuwe mechatronica. Buigzaam Een belangrijk gereedschap zijn elastische mechanismen met een extreem lage stijfheid. Door traditionele mechanische systemen, bijvoorbeeld op basis van lagers, te vervangen door deze buigzame alternatieven, ontstaat er een materiaaloppervlak waar actieve lagen op aangebracht kunnen worden. Elektro-actieve polymeerlagen kunnen bijvoorbeeld dienst doen als sensoren, en piëzo-elektrische lagen als actuatoren om bewegingen te genereren. Op deze manier worden beweging, actuatie en sensing in één continue structuur gecombineerd. Deze structuur verspilt minder energie en is bovendien ook goed te verkleinen. Herder: “Dit is een andere manier om naar werktuigbouwkundige machines te kijken. Momenteel zien we dat machines steeds groter worden om een grotere nauwkeurigheid te bereiken en om die reden steeds meer ruimte, materiaal en energie gebruiken.” Energy harvesting Een bijzondere eigenschap van de mechanismen met extreem lage stijfheid die in Herder’s groep worden onderzocht, is dat ze gebruikt kunnen worden om energie te ‘oogsten’ uit trage bewegingen. “Denk bijvoorbeeld aan een zeecontainer,” legt hij uit. “Om te weten waar die zich bevindt, wil je eigenlijk een GPS tracker inbouwen die af en toe een signaal afgeeft. Maar je wil niet telkens de batterijen moeten vervangen. Een simpel mechanisch systeem dat energie haalt uit de bewegingen die de container maakt terwijl het de oceaan oversteekt, heeft geen batterij nodig.” De toepassingen zijn legio, en Herder werkt nauw samen met industriële partners. Het spin-off bedrijf dat voortkwam uit Herder’s onderzoek naar flexibele mechanische onderdelen, Flexous BV, heeft inmiddels dochterbedrijf Kinergizer BV gestart dat zich specifiek richt op energy harvesting toepassingen. Autonome microrobots Herder: “Over 5 jaar hoop ik dat we erin geslaagd zijn om deze lage-stijfheid mechanismen volledig te integreren in micro-elektromechanische systemen (MEMS), gefabriceerd door middel van de gangbare chipfabricagetechnieken. “Als we deze veelgebruikte technieken kunnen inzetten om ook geïntegreerde MEMS/mechatronische systemen te bouwen, gaat er een wereld van mogelijkheden open.” In dezelfde tijd verwacht hij voortgang op het gebied van biogeïnspireerde robotjes voor zich, die autonoom in ongestructureerde omgevingen, zoals over bepaalde organen in het lichaam, kunnen manoeuvreren om deze langdurig en volcontinu te inspecteren. “De natuur maakt geen gebruik van propellers om beweging door een vloeistof te genereren. In plaats daarvan zien we dat trilhaartjes of staartjes die taak uitvoeren. De combinatie van mechatronica en nanotechnologie biedt mogelijkheden om dergelijke systemen te bouwen op de kleinst mogelijke lengteschaal. Op groter formaat hebben we al de eerste resultaten verkregen. In de komende jaren hoop ik dat prototypes zich autonoom kunnen verplaatsen, een beetje zoals een robotstofzuiger dat doet.” Nano-Engineering Research Initiative Herder is enthousiast over het potentieel van de combinatie van mechatronica en nanotechnologie binnen zijn afdeling. “Ik denk dat we nog veel meer kunnen. Talloze interessante fenomenen liggen voor het oprapen nu we nanotechnologische expertise in het vakgebied van de mechatronica injecteren. Hiermee kunnen we materialen, instrumenten en apparaten maken die werken dankzij nanotechnologie ( nano-enabled ), en, omgekeerd, machines ontwikkelen die op grote schaal producten op basis van nanotechnologie maken ( enabling nano ).” Hij verwacht dan ook veel van het Nano-Engineering Research Initiative (NERI) initiatief. “Het mooie aan NERI is de combinatie van expertisegebieden in één afdeling. “Ik heb maar weinig verstand van nanotechnologie maar wel van automatisering. Voor anderen is dat precies andersom. De lijnen zijn kort. We bedenken de meest exotische plannen en komen er telkens achter dat die plannen best haalbaar zijn als we het samen doen.” In aanvulling op de vele projectmatige samenwerkingsverbanden met het bedrijfsleven ziet Herder in NERI een nieuwe manier om de samenwerking vloeiender voort te zetten en om continuïteit te garanderen op de langere termijn. “Het idee is om groepsgewijs bepaalde onderzoeksrichtingen te steunen. Bedrijven uit verschillende branches met interesse in hetzelfde onderzoeksthema slaan de handen ineen. Doordat de deelnemers verschillende toepassingen voor ogen hebben, is er alle ruimte voor samenwerking in plaats van concurrentie.” Momenteel zijn Herder en collega’s volop bezig met de eerste NERI-contracten. “Dit is een kantelpunt. Met NERI kunnen we laten zien wat we in huis hebben en wat we waard zijn.” Prof. Just Herder

Beter begrip staal bevordert kwaliteit vervoersmiddelen

De Titanic was het grootste schip ter wereld. In 1912, tijdens zijn eerste reis, botste het tegen een ijsberg en zonk het binnen drie uur. Ruim 1500 passagiers kwamen om het leven. “Het is de bekendste scheepsramp in de geschiedenis, omdat iedereen dacht dat het niet kon zinken. Maar in die tijd wist men nauwelijks iets over staal”, zegt Jilt Sietsma, hoogleraar Microstructure Control in Metals op de afdeling Materials Science and Engineering. “Alle kennis over staal was destijds gebaseerd op ervaringskennis. Zo gooide een smid een nieuw zwaard in het water om het af te koelen en hield het vervolgens in het vuur om er met een hamer op te slaan en het van vorm te veranderen. Die smid had geen idee van wat zich allemaal in het materiaal afspeelde.”. Inmiddels weten we niet alleen waarom staal bij hogere temperaturen goed vervormbaar is, maar ook dat het bij lage temperaturen heel bros wordt, waardoor het relatief gemakkelijk kan scheuren. Schepen die tussen ijsschotsen door varen, moeten dus gemaakt zijn van materiaal dat daar tegen kan. “We weten dat staal niet meer bros mag worden bij temperaturen rond het vriespunt, maar hoe we dat precies voor elkaar moeten krijgen, weten we niet”, zegt Marcel Sluiter, Universitair Hoofddocent op dezelfde afdeling als Sietsma. “Dat is één van onze grootste onderzoeksuitdagingen. Kortom, we staan nog middenin het fundamentele onderzoek naar staal”. Bij de faculteit 3mE proberen materiaalkundigen de structuur van staal steeds beter te begrijpen. Met structuur bedoelen ze dat ieder atoom zich graag omringt met bepaalde andere atomen. Net als het Atomium in Brussel waar één atoom acht atomen om zich heen heeft; zo’n structuur heet ook wel een kristal. Het Atomium visualiseert de kristalstructuur van ijzer, maar een korreltje keukenzout is net zo goed een kristal. Kristallen zitten ook in staal, alleen zijn die veel kleiner dan in keukenzout en kleven ze keihard aan elkaar vast. Daardoor ervaren we dit materiaal als één stuk. (Foto: Dochter van de Smid. Foto gemaakt door Richard Alma) Verwarm je staal, dan hebben de atomen de neiging om een andere structuur aan te nemen. Dit fenomeen heet fase-transformatie. Veel mensen denken hierbij aan de overgang van gas naar vloeistof naar een vaste stof of andersom. Maar binnen een vaste stof komen dit soort fase-transformaties ook voor. Deze zijn belangrijk om te begrijpen, want de structuur van een materiaal bepaalt uiteindelijk alles: hoe sterk het is, hoe goed vervormbaar het is en hoe goed het tegen corrosie kan. Marcel Sluiter bestudeert die structuur op atomaire schaal en Jilt Sietsma doet hetzelfde op micrometer-schaal, een iets grotere schaal dus. Jilt: “Stel dat een materiaal een aantal eigenschappen zou moeten hebben, waaronder een sterkte van 384 Megapascal. Dan moet je eerst bepalen wat de ideale structuur is en vervolgens hoe je die structuur in de praktijk voor elkaar krijgt”. De grootste paradox in het gebruik van staal is dat het al duizenden jaren gebruikt wordt, onder meer in de bouw, in auto’s en in blikjes van de verpakkingsindustrie, maar dat we er pas in de laatste decennia wat meer van zijn gaan begrijpen. Jilt: “Pas in 1905 werd röntgenstraling ontdekt, waarmee we nu analyseren hoe de materiaalstructuur in elkaar zit. Voor die tijd konden we dus helemaal niet zien uit welke kristallen staal was opgebouwd. We gebruiken staal dus wel makkelijk, maar het begrijpen is een stuk moeilijker”. Toch is in het verbeteren van de eigenschappen van staal veel meer vooruitgang geboekt dan de meeste andere metalen. Een voorbeeld daarvan is de auto: moderne staalsoorten kunnen veel beter de energie bij een botsing absorberen dan vroeger. Kwam je in 1970 in botsing met een auto, dan bood de auto nauwelijks bescherming. Tegenwoordig komt een groot deel van de energie van zo’n botsing niet meer in je lichaam terecht, maar blijft het in de kreukelzone hangen, omdat het huidige staal veel meer vervormingsenergie kan opslaan. Gelukkig weten Delftse wetenschappers steeds beter wat er gebeurt in staal. Inmiddels durven ze te dromen over wat ze in de toekomst voor elkaar zouden willen krijgen. “We willen bijvoorbeeld begrijpen hoe scheuren ontstaan in treinwissels. Als we dat helemaal zouden snappen, dan zouden we ervoor kunnen zorgen dat wissels nooit meer kapot gaan. Wellicht zouden we dan het gebruik van het openbaar vervoer kunnen bevorderen”, zegt Sietsma. Dat klinkt eenvoudig, maar voor de wissels die de afgelopen veertig jaar in Nederland zijn gelegd, zijn allerlei verschillende staalsoorten gebruikt. Een andere toekomstdroom is nog betere kreukelzones in auto’s, bijvoorbeeld ook voor zijwaartse botsingen. De meest ambitieuze toepassing voor staal is bij kernfusie, ofwel het opwekken van energie. Marcel: “Daar zijn enorme hoge temperaturen en stralingsniveaus. Materialen zijn daar echt de bottleneck , omdat de temperatuur waaraan je ze kan blootstellen beperkt is en nog onbekend is hoe ze de stralingsschade ondergaan”. Het fundamentele onderzoek naar staal wordt voor een groot deel uitgevoerd in samenwerking met Tata Steel. Jilt: “Als we de fundamentele basis van staal beter kennen en goed kunnen modelleren, kunnen we veel efficiënter nieuwe staalsoorten ontwikkelen en zijn we niet meer afhankelijk van trial and error. Tata Steel vertaalt ons fundamentele werk naar hun researchafdeling en naar toepassingen in hun fabriek, zoals het maken van staal voor auto’s en verpakkingsstaal”. Ook met ProRail doet 3mE projecten: aangezien alle rails en wissels van staal zijn gemaakt, gaat het onderzoek over waar schade ontstaat, waarom en hoe dat samenhangt met de structuur van staal. Het liefst zouden de Delftenaren willen dat alle ingenieurs een beter begrip van krijgen van materiaalkunde. Bij voorkeur al vanaf dat ze student zijn. Marcel: “Alles is van materialen gemaakt en elke ingenieur zou daar meer over moeten weten. In de praktijk blijken ze vaak niet in staat om het optimale materiaal te kiezen, bijvoorbeeld voor een spoorwissel, een biomedische toepassing of een brug. Voor al die gebieden heb je andere wensen: in de buitenlucht en in het menselijk lichaam moet het materiaal niet corrosiegevoelig zijn, terwijl staal in een auto een hoge sterkte en een hoge vervormbaarheid moet hebben. Het gaat er bovendien niet alleen om dat je het beste materiaal kiest, maar ook dat het op lange termijn goed blijft. Ingenieurs moeten goed gaan begrijpen dat materiaal uit meer aspecten bestaat dan die ene tabel waarin staat hoe sterk het precies is”. Jilt Sietsma Marcel Sluiter
/* */