Norte Research Group

Our research focuses on creating new microchip technologies and designer meta-materials which can manipulate light & sound at the nanoscale. This allows us to create circuits which route photons & phonons in the same way conventional circuitry routes electrons. By sending laser light into nano-photonic circuits, we can interact with micro-sized mechanical oscillators, allowing us to measure vibrations on the femto-meter scale (10-15 m) – a size normally reserved to describe the radius of protons. We are expanding these unique capabilities to create quantum-limited sensors which can detect accelerations, temperatures, and forces on integrated microchips and can be readily translated into emerging nanotechnology industries. These light-based sensors are now laying the groundwork towards new types of microphones, accelerometers, and inertial navigation systems which can out-perform many conventional MEMS platforms in terms of sensitivity, energy consumption, and immunity to environmental noise and jamming. The aim is to create nano-mechanical sensors so sensitive and easy-to-use that we can study fundamental physics in new ways and push forward commercial applications.

Richard Norte holds a bachelors degree in Physics and Mathematics from Stanford University and a Ph.D. in Physics from Caltech (CV). His work has been featured in Nature, Nature Photonics, Science, Physical Review Letters and on the cover of Optica, Scientific American and Advanced Materials. He is co-founder of consulting company, Nenso Solutions, which helps enable nanotechnology for next-generation industries. Richard is currently a researcher in the Department of Quantum Nanoscience. The Norte Research Group is part of the DMN research group in the Precision and Microsystems Engineering (PME) department.

/* */