Research

Mission statement

MREL research aims to accelerate the renewable energy transition, through innovative research in marine renewable energies (wave, wind, tidal). Our research outputs provide scientific evidence based arguments for the development of marine renewables, advancing scientific research, industry and policy making.

Our research covers a spectrum of topics necessary for informative decision making, ensuring that all approaches are based on realistic premises, and improving the state-of-the-art in marine renewables to accelerate their deployment. We research in:

  1. Enhance/customise wave, tidal resource spectral and non-hydrostatic models.
  2. Resource assessments of marine renewables for historical and future (Climate Change).
  3. Develop/enhance hydrodynamic frequency, time domain, and far-field models.
  4. Effects of extremes and fatigue in marine renewable structures.
  5. Optimisation of arrays by understanding physical phenomena & interactions.
  6. Research in mitigation methods for coastal protection, erosion, and ice impacts.
  7. Integration of marine renewables in energy systems.
  8. Techno-economic and future development for marine renewables.

Find also more on our projects and publications also via our Research Gate Lab.

WECHULL+

Sustainable Concrete Material Leading to Improved Substructures for Offshore Renewable Energy Technologies (NWO), website

HybridLabs 

Accelerating Dutch innovations in offshore renewables through data-driven hybrid labs (NWO)

EU-SCORES

EUropean SCalable Offshore Renewable Energy (H2020), CORDISwebsite

VALID

Verification through Accelerated testing Leading to Improved wave energy Designs (H2020), CORDISwebsite

Dutch-WATERS

Dutch-Wave And Tidal Energy ResourceS, websiteTKI Deltatechnologie

WECANet

Pan-European Network for wave energy, website

Merganser

DEI+ Pilot Merganser (RVO, TKI wind op Zee), website

WAVREP

WAVe Resource for Electrical Production (MSCA-IF | H2020), CORDISwebsite

* bold notes lab members
  1. Raghavan, V., Simonetti, I., Metrikine, A., Lavidas, G., & Cappietti, L. (2024). A new numerical modelling framework for fixed oscillating water column wave energy conversion device combining BEM and CFD methods: Validation with experiments. Ocean Engineering, https://doi.org/10.1016/j.oceaneng.2024.117543 

  2. Alday, M.,  Lavidas, G. (2024), Assessing the Tidal Stream Resource for energy extraction in The Netherlands, Renewable Energy, https://doi.org/10.1016/j.renene.2023.119683

  3. Christakos K.,  Lavidas G., Gao Z., Bjorkqvist J.V. (2024), Long-term conditions of wave conditions and wave energy resource in the Arctic Ocean, Renewable Energy, https://doi.org/10.1016/j.renene.2023.11967

  4. Satymov, R., Bogdanov, D., Dadashi, M., Lavidas, G., Breyer, C., (2024), Techno-economic assessment of global and regional wave energy resource potentials and profiles in hourly resolution, Appiled Energy, https://doi.org/10.1016/j.apenergy.2024.123119

  5. Lavidas, G., Delgado Elizundia, F., & Blok, K. (2023), Integration of wave energy into Energy Systems: an insight to the system dynamics and ways forward. Proceedings of the 15th European Wave and Tidal Energy Conference, https://doi.org/10.36688/ewtec-2023-157

  6. Alday, M., Raghavan, V., & Lavidas, G. (2023), Analysis of the North Atlantic offshore energy flux from different reanalysis and hindcasts. Proceedings of the 15th European Wave and Tidal Energy Conference, https://doi.org/10.36688/ewtec-2023-140

  7. Raghavan, V., Simonetti, I., Lavidas, G., Metrikine, A.,  & Cappietti, L. (2023), Numerical modelling of a box-type and bottom-detached oscillating water column wave energy conversion device: a comparison with experimental data and between BEM and CFD numerical modelling. Proceedings of the 15th European Wave and Tidal Energy Conference, https://doi.org/10.36688/ewtec-2023-142

  8. Maya, P., & Gonzalez, M. A., Metrikine, A., Lavidas, G. (2023), CMIP6 wave climate simulation in the European North East Atlantic Basin using WaveWatch III. Proceedings of the 15th European Wave and Tidal Energy Conference, https://doi.org/10.36688/ewtec-2023-153

  9. Corrales González, M. A., Lavidas, G., & Besio, G. (2023), Feasibility of wave energy harvesting in the Ligurian Sea. Proceedings of the 15th European Wave and Tidal Energy Conference, https://doi.org/10.36688/ewtec-2023-197

  10. Corrales-Gonzalez, Manuel, George Lavidas, Giovanni Besio, (2023), Feasibility of wave energy harvesting in the Ligurian Sea, Italy, Sustainability, https://doi.org/10.3390/su15119113

  11. Baki, Harish, Basu, S., and Lavidas, George, 2023, Statistical characterization of simulated wind ramps, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-17208, https://doi.org/10.5194/egusphere-egu23-17208

  12. Nicolas Guillou , George Lavidas, and Bahareh Kamranzad, (2023), Wave Energy in Brittany (France)—Resource Assessment and WEC Performances, Sustainability, https://doi.org/10.3390/su15021725 

  13. Tatiana Potapenko, Jessica S. Döhler, Francisco Francisco, George Lavidas, Irina Temiz, (2023), Renewable Energy Potential for Micro-Grid at Hvide Sande, Sustainability, https://doi.org/10.3390/su15032234 

  14. Lavidas, George, F. D. Leo, and G. Besio, (2023), Assessing the integration of an oscillating water column at the planned Genoa breakwater. In: 2nd International Conference Design and Management of Port, Coastal and Offshore Works (DMPCO at Vol I), Thessaloniki, Greece.

  15. Hoogervorst C. D., Antolinez A. A. J., Portilla-Yandun P., Lavidas G., Tissier M., Aarninkhof S. (2023), Unraveling Multimodal Nearshore Wind-Wave Fields On The Dutch Shoreface,  Coastal Engineering Proceedings (37), ICCE, https://doi.org/10.9753/icce.v37.waves.35

  16. George Lavidas, Vengatesan Venugopal, (2022), Impacts of physical calibration of a spectral wave model and effects of using different temporal wind inputs, Trends in Renewable Energies Offshore: RENEW 2022 5th International Conference on Renewable Energies Offshore 08 - 10 November 2022, Lisbon, Portugal, Editor Guedes Soares, Taylor Francis, ISBN: 978-1-032-42003-5 (eBook ISBN: 978100336077)

  17. V. Raghavan, G. Lavidas, A.V. Metrikine, N. Mantadakis, E. Loukogeorgaki, (2022), A comparative study on BEM solvers for Wave Energy Converters, Trends in Renewable Energies Offshore: RENEW 2022 5th International Conference on Renewable Energies Offshore 08 - 10 November 2022, Lisbon, Portugal, Editor Guedes Soares, Taylor Francis, ISBN: 978-1-032-42003-5 (eBook ISBN: 978100336077)

  18. Felix Delgado, George Lavidas, Kornelis Blok, (2022), Wave energy and the European transmission system, Trends in Renewable Energies Offshore: RENEW 2022 5th International Conference on Renewable Energies Offshore 08 - 10 November 2022, Lisbon, Portugal, Editor Guedes Soares, Taylor Francis, ISBN: 978-1-032-42003-5 (eBook ISBN: 978100336077)

  19. Rojas‐Delgado, B., Ekweoba, C.,  Lavidas, G.; Temiz, I., 2022, GA‐Based Permutation Logic for Grid Integration of Offshore Multi‐Source Renewable Parks, Machines,, https://doi.org/10.3390/machines10121208 

  20. E. Loukogeorgaki, C. Michailides, G. LavidasS. Saeidtehrani, I.K. Chatjigeorgiou, (2022), Load assessment of optimally-arranged point absorbers arrays in front of a vertical wall, Trends in Renewable Energies Offshore: RENEW 2022 5th International Conference on Renewable Energies Offshore 08 - 10 November 2022, Lisbon, Portugal, Editor Guedes Soares, Taylor Francis, ISBN: 978-1-032-42003-5 (eBook ISBN: 978100336077)

  21. S. Saeidtehrani, A. Cabboi, G. Lavidas, A.V. Metrikine, (2022), Flap-type wave energy converters: From accelerated testing to fault detection, Trends in Renewable Energies Offshore: RENEW 2022 5th International Conference on Renewable Energies Offshore 08 - 10 November 2022, Lisbon, Portugal, Editor Guedes Soares, Taylor Francis, ISBN: 978-1-032-42003-5 (eBook ISBN: 978100336077)

  22. Jannis Langer, Sergio Simanjuntak, Antonio Jarquin Laguna, George Lavidas, Henk Polinder, Jaco Quist, Kornelis Blok, (2022), How offshore wind could become economically attractive in low-resource regions like Indonesia, iScience, https://doi.org/10.1016/j.isci.2022.104945 

  23. Coe, Ryan G, Lavidas George, Giorgio Bacelli, and Vincent S Neary (2022), Minimizing Cost in a 100% Renewable Electricity Grid a Case Study of Wave Energy in California, 41st International Conference on Ocean, Offshore and Arctic Engineering, OMAE2022

  24. Saeidtehrani, Saghy, and George Lavidas, (2022), Performance Modelling of Flap-Type Wave Energy Converter Array: Flaps With Various Dynamic Characteristics,  41st International Conference on Ocean, Offshore and Arctic Engineering, OMAE2022

  25. Saeidtehrani, Saghy, George Lavidas, and Andrei Metrikine, (2022) Environmental Extreme Conditions for a Wave Energy Converter: An Integrated Wave-Structure Approach, 41st International Conference on Ocean, Offshore and Arctic Engineering, OMAE2022

  26. Lavidas, George and Kornelis Blok, (2021), Shifting Wave Energy Perceptions: The Case for Wave Energy Converter (WEC) Feasibility at Milder Resources,  Renewable Energy, https://doi.org/10.1016/j.renene.2021.02.041

  27. Lavidas, George and Bahareh Kamranzad, (2021), Assessment of Wave Power Stability and Classification with Two Global Datasets, International Journal of Sustainable Energy,  https://doi.org/10.1080/14786451.2020.1821027

  28. Loukogeorgaki, Eva, Constantine Michailides, George Lavidas, and Ioannis K. Chatjigeorgiou, (2021), Layout Optimization of Heaving Wave Energy Converters Linear Arrays in Front of a Vertical Wall,  Renewable Energy, https://doi.org/10.1016/J.RENENE.2021.07.040

  29. George Lavidas, and Kornelis Blok, (2021), Levelised Cost of Electricity for Wave Energy Converters and the Perception of Milder Resource Non-Viability in the North Sea, 11th European Wave and Tidal Energy Conference (EWTEC)

  30.  George Lavidas,  Eva Loukogeorgaki, Constantine Michalides, and Ioannis K Chatjigeorgiou, (2021), Effects of Metocean Conditions on Selecting Optimal Location for Wave Energy Production, 11th European Wave and Tidal Energy Conference (EWTEC)

  31. Loukogeorgaki, Eva, Constantine Michailides, George Lavidas, and Ioannis K Chatjigeorgiou, (2021), Optimum Layouts of a Cluster of Heaving Point Absorbers in Front of a Wall, International Society of Offshore and Polar Engineers (ISOPE)