Dr. Boris van Breukelen

Research profile

My research aims to improve the mechanistic understanding of water quality changes in natural and engineered environmental systems with the goal of evidence-based water resources management. To this end, I combine field site monitoring, laboratory experiments, and reactive transport modelling. I am interested in the full suite of water quality constituents and their interactions: main ions; (geogenic) trace metals like arsenic; nutrients; gases; organic micro pollutants (e.g., aromatic hydrocarbons, chlorinated ethenes, pesticides) with compound-specific stable isotope analysis (CSIA); and microorganisms including pathogens. The focus of my research is on groundwater technologies which become increasingly popular to seasonally store/abstract water or thermal energy, or treat pollution in the subsurface such as: managed aquifer recharge (MAR), aquifer thermal energy storage (ATES), monitored natural attenuation (MNA), and subsurface iron and arsenic removal (SIR/SAR). Furthermore, I am interested in engineered sand filters for groundwater pre- and post-treatment, and water quality in larger scale groundwater and surface water systems.

Specialty Chief Editor Frontiers in Water – Section Environmental Water Quality

  • Associate Professor (tenured), since September 2020, Delft University of Technology
  • Assistant Professor (tenure-track), September 2015-Augustus 2020, Delft University of Technology
  • Assistant Professor (tenured), 2002-Augustus 2015, VU University Amsterdam
  • PhD degree, 2003, Department of Earth Sciences, VU University Amsterdam
  • Researcher, 1997-2002, Department of Earth Sciences, VU University Amsterdam
  • Doctorandus degree in Environmental Sciences, 1997, VU University Amsterdam
  • VWO, 1991, Vossius Gymnasium Amsterdam (secondary school)

1.    Land, Sea, and Society: Linking terrestrial pollutants and inputs to nearshore coral reef growth to identify novel conservation options for the Dutch Caribbean (SEALINK). Multidisciplinary project funded (3.5 M€) by NWO Caribbean research. 2021-2025. WP leader on water and pollutant fluxes from land to sea and promotor of 2 PhD students (one at WUR). PhD students to be recruited by summer 2021.

2.    Agriculture & Managed Aquifer Recharge (AGRIMAR): Drainage Water Recycling for Irrigation and Surface Water Quality Protection. Funded by NWO Topsector Water. 2017-2021. Coordinator. More information on the project (in Dutch).

3.    MAR performance and optimization regarding drinking water quality in coastal Bangladesh with focus on arsenic (im)mobilization. DeltaMAR project funded by NWO UDW. 2016-2020. PhD student Risalat Rafiq. More information on the project.

4.    Biofiltration & ASR of urban storm water. Funded by EU Climate KIC. 2019-2021. PDEng student Joshua Gallegos. More information on the project.

5.    Advancing reactive transport modelling of groundwater technologies. Funded by China Scholarship Council (CSC). PhD student Zhen Chen. 2020-2024.

6.    Sensor data fusion for remote monitoring of hydrocarbon groundwater pollution plumes. Funded by NWO-Wetsus. 2020-2024. Vacancy. More information on the project.

6. 2020. Héloïse Thouement (TU Delft): “Peeking inside the black-box: A model-based interpretation of multi-elemental isotope date of chlorinated ethenes in heterogeneous aquifer systems”. Funding: EU Marie Curie ITN CSI:ENVIRONMENT; USA ESTCP project ER-201029; USA SERDP project ER-2623. PDF of PhD thesis.

5. 2017. Moshiur Rahman (TU Delft): “Field experiments and reactive transport modelling of subsurface arsenic removal in Bangladesh”. Funding: NWO WOTRO. PDF of PhD thesis.

4. 2015. Stefanie Lutz (VU University Amsterdam): “Isotopic fingerprints of organic pollutants: quantifying sources and sinks of organic pollutants with isotope analysis from aquifer to catchment scale”. Funding: EU Marie Curie ITN CSI:ENVIRONMENT. PDF of PhD thesis.

3. 2015. Andreas Antoniou (VU University Amsterdam). “Optimizing aquifer storage recovery through hydrogeochemical analysis of a pilot, column tests, and modeling”. Funding: TTIW. PDF of PhD thesis.

2. 2014. Paula Rodríguez-Escales (Excellent – Cum Laude; Autonomous University of Barcelona): “Modeling of enhanced in situ bionitrification at different scales: Integration of microbiological, hydrogeochemical, and isotope biogeochemical processes”. Funding: several Spanish national projects. PDF of PhD thesis.

1. 2013. Matthijs Bonte (VU University Amsterdam): “Impacts of shallow geothermal energy on groundwater quality. A hydrochemical and geomicrobial study of the effects of ground source heat pumps and aquifer thermal energy storage”. Funding: joint research program of the Dutch Water sector (BTO), “Effects of shallow geothermal energy”, B111680. PDF of PhD thesis.

In addition, I have co-supervised the following 4 PhD students (co-author of 2-3 chapters/articles in PhD thesis): Lin Bin (2006); Trian Brad (2007); Jubhar Mangimbulude (2013); and Liang Yu (2021).

A list of all publications by Boris van Breukelen can be found here (google scholar)

Publication statistics (January, 2021):
60 peer reviewed publications in international journals
h-index: 27 Google Scholar, 24 ISI
Citations: 2730 Google Scholar, 1825 ISI

Below selected publications are shown per research topic:

Managed Aquifer Recharge (MAR)

Naus, F.L; Schot, P.; van Breukelen, B.M.; Ahmed, K.M.; Griffioen, J., 2020. Potential for managed aquifer recharge in southwestern Bangladesh based on social necessity and technical suitability. Hydrogeology Journal

, doi.org/10.1007/s10040-020-02264-1.

Open Access.

Antoniou, E.A., van Breukelen, B.M., Stuyfzand, P.J., 2015. Optimizing aquifer storage and recovery through reactive transport modeling. Applied Geochemistry, 61, 29-40.

Antoniou, E.A., Hartog, N., van Breukelen, B.M., Stuyfzand, P.J., 2014. Aquifer pre-oxidation using permanganate to mitigate water quality deterioration during aquifer storage recovery. Applied Geochemistry, 50, 25-36.

Antoniou, E.A., Stuyfzand, P.J. and van Breukelen, B.M., 2013. Reactive transport modeling of an aquifer storage and recovery (ASR) pilot to assess long-term water quality improvements and potential solutions. Applied Geochemistry, 35: 173-186.

Antoniou, E. A., van Breukelen, B. M., Putters, B., Stuyfzand, P. J., 2012. Hydrogeochemical patterns, processes and mass transfers during aquifer storage and recovery (ASR) in an anoxic sandy aquifer. Applied Geochemistry, 27 (12), 2435-2452.

Karlsen, R.H., Smits, F. J. C., Stuyfzand, P.J., Olsthoorn, T.N., van Breukelen, B.M., 2012. A Post audit and inverse modeling in reactive transport: 50 years of artificial recharge in the Amsterdam water supply dunes. Journal of Hydrology, 454-455: 7-25

Van Breukelen, B.M., Appelo, C.A.J., Olsthoorn, T.N., 1998. Hydrogeochemical transport modeling of 24 years of Rhine water infiltration in the dunes of the Amsterdam water supply. Journal of Hydrology, 209(1-4): 281-296.

Aquifer Thermal Energy Storage (ATES)

Van Breukelen, B.M.; Bonte, M., 2016. Comment on “Thermally Released Arsenic in Porewater from Sediments in the Cold Lake Area of Alberta, Canada”. Environmental Science & Technology, 50, 7263-7264.

Bonte, M., Stuyfzand, P.J., van Breukelen, B.M., 2014. Reactive Transport Modeling of Thermal Column Experiments to Investigate the Impacts of Aquifer Thermal Energy Storage on Groundwater Quality. Environmental Science & Technology, 48, 12099–12107.

Bonte, M., Röling, W.F.M., Zaura, E., van der Wielen, P.W.J.J., Stuyfzand, P.J. and van Breukelen, B.M., 2013. Impacts of Shallow Geothermal Energy Production on Redox Processes and Microbial Communities. Environmental Science & Technology, 47: 14476−14484.

Zuurbier, K.G., Hartog, N., Valstar, J., Post, V.E.A. and van Breukelen, B.M., 2013. The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: Modeling of spreading and degradation. Journal of Contaminant Hydrology, 147: 1-13.

Bonte, M., van Breukelen, B.M. and Stuyfzand, P.J., 2013. Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production. Water Research, 47(14): 5088-5100.

Bonte, M., van Breukelen, B.M., Stuyfzand, P.J., 2013. Environmental impacts of aquifer thermal energy storage investigated by field and laboratory experiments. Journal of Water and Climate Change, 4: 77-89.

Surface Water Quality

Yu, L.; Rozemeijer, J.C.; Broers, H.P.; van Breukelen, B.M.; Middelburg, J.J.; Ouboter, M.; van der Velde, Y., 2020. Drivers of nitrogen and phosphorus dynamics in a groundwater-fed urban catchment revealed by high frequency monitoring. Hydrol. Earth Syst. Sci., 25, 69-87. Open Access.

Lutz, S. R.; Trauth, N.; Musolff, A.; Van Breukelen, B. M.; Knöller, K.; and Fleckenstein, J. H., 2020. How important is denitrification in riparian zones? combining endmember mixing and isotope modeling to quantify nitrate removal from riparian groundwater. Water Resources Research

, 55. doi.org/10.1029/2019WR025528.

Open Access.

Yu, L.; Rozemeijer, J.; van der Velde, Y.; van Breukelen, B.M.; Ouboter, M.; Broers, H.P., 2019. Urban hydrogeology: transport routes and mixing of water and solutes in a groundwater influenced urban lowland catchment. Science of the Total Environment, 678, 288-300.

Yu, L.; Rozemeijer, J.; van Breukelen, B.M.; Ouboter, M.; van der Vlugt, C.; Broers, H.P., 2017. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area. Hydrol. Earth Syst. Sci., 22, 487-508. Open Access.

Benettin, P.; van Breukelen, B.M., 2017. Decomposing bulk electrical conductivity of streamflow to recover individual solute concentrations at high frequency. Environmental Science & Technology Letters., 4, 518-522.

Lutz, S.R.; van der Velde, Y.; Elsayed, O.F.; Imfeld, G.; Lefrancq, M.; Payraudeau, S.; van Breukelen, B.M., 2017. Pesticide fate at catchment scale: conceptual modelling of stream CSIA data. Hydrol. Earth Syst. Sci., 21, 5243-5261. Open Access.

Hrachowitz, M.; Benettin, P.; van Breukelen, B.M.; Fovet, O.; Howden, N.J.K.; Ruiz, L.; van der Velde, Y.; Wade, A.J., 2016. Transit times – the link between hydrology and water quality at the catchment scale. WIREs Water. DOI: 10.1002/WAT2.1155. Open Access.

Lutz, S.R., van Meerveld, H.J., Waterloo, M.J., Broers, H.P., and van Breukelen, B.M., 2013. A model-based assessment of the potential use of compound-specific stable isotope analysis in river monitoring of diffuse pesticide pollution. Hydrol. Earth Syst. Sci., 17(11): 4505-4524. Open Access.

Arsenic in Groundwater Bangladesh

Rahman M.; Bakker, M.; Patty, L.; Hassan, Z.; Röling, W.; Ahmed, K.M.; van Breukelen, B.M., 2015. Reactive transport modeling of subsurface arsenic removal systems in rural Bangladesh. Science of the Total Environment, 537, 277-293.

Hassan, Z.; Sultana, M.; van Breukelen, B.M.; Khan, S.I.; Röling, W.F.M., 2015. Diverse arsenic- and iron-cycling microbial communities in arsenic-contaminated aquifers used for drinking water in Bangladesh. FEMS Microbial Ecology, 91, 1-17.

Rahman, M; Bakker, M; Borges Freitas, S; van Halem, D; van Breukelen, B.M.; Ahmed, K; Badruzzaman, A.B., 2015. Exploratory experiments to determine the effect of operational parameters on the efficiency of Subsurface Arsenic Removal (SAR) in rural Bangladesh. Hydrogeology Journal, 23, 19-34.

Modelling of CSIA Data for Improved Degradation Assessment in Groundwater Pollution Studies

Cheng, Y.; Arora, B.; Şengör, S.S., Druhan, J.L.; Wanner, C.; van Breukelen, B.M.

; Steefel, C.I. Microbially mediated kinetic sulfur isotope fractionation: reactive transport modeling benchmark. Computational Geosciences (2020). doi.org/10.1007/s10596-020-09988-9.

Open Access.

Thouement, H.A.A.; Kuder, T.; Heimovaara, T.J.; van Breukelen, B.M., 2019. Do CSIA data from aquifers inform on natural degradation of chlorinated ethenes in aquitards? Journal of Contaminant Hydrology

, 226, 103520. doi.org/10.1016/j.jconhyd.2019.103520.

Open Access.

van Breukelen, B.M.; Thouement, H.A.A.; Stack, P.E.; Vanderford, M.; Philp, P.; Kuder, T., 2017. Modeling 3D-CSIA data: Carbon, chlorine, and hydrogen isotope fractionation during reductive dechlorination of TCE to ethene. Journal of Contaminant Hydrology, 204, 79-89. Open Access.

Lutz, S.R.; Van Breukelen, B.M., 2014. Combined Source Apportionment and Degradation Quantification of Environmental Pollutants with CSIA: 1. Model Derivation. Environmental Science & Technology, 48, 6220−6228.

Lutz, S.R.; Van Breukelen, B.M., 2014. Combined Source Apportionment and Degradation Quantification of Environmental Pollutants with CSIA: 2. Model Validation and Application. Environmental Science & Technology, 48, 6229−6236.

Kuder, T., van Breukelen, B.M., Vanderford, M. and Philp, P., 2013. 3D-CSIA: Carbon, Chlorine, and Hydrogen Isotope Fractionation in Transformation of TCE to Ethene by a Dehalococcoides Culture. Environmental Science & Technology, 47: 9668−9677.

van Breukelen, B.M., Rolle, M., 2012. Transverse hydrodynamic dispersion effects on isotope signals in groundwater chlorinated solvents’ plumes. Environmental Science and Technology, 46, 7700-7708

Hunkeler, D., van Breukelen, B.M., Elsner, M., 2009. Modeling chlorine isotope trends during sequential transformation of chlorinated ethenes. Environmental Science and Technology, 43(17), 6750–6756.

Van Breukelen, B.M., Prommer, H., 2008. Beyond the Rayleigh equation: reactive transport modeling of isotope fractionation effects to improve quantification of biodegradation. Environmental Science and Technology, 42(7), 2457-2463.

Van Breukelen, B.M., 2007. Quantifying the degradation and dilution contribution to natural attenuation of contaminants by means of an open system Rayleigh equation. Environmental Science and Technology, 41(14), 4980-4985.

Van Breukelen, B.M., 2007. Extending the Rayleigh equation to allow competing isotope fractionating pathways to improve quantification of biodegradation. Environmental Science and Technology, 41(11), 4004-4010.

Van Breukelen, B.M., Hunkeler, D., Volkering, F., 2005. Quantification of sequential chlorinated ethene degradation by use of a reactive transport model incorporating isotope fractionation. Environmental Science and Technology, 39(11): 4189-4197.

Mancini, S.A., Lacrampe-Couloume, G., Jonker, H., Van Breukelen, B.M., Groen, J., Volkering, F., Lollar, B.S., 2002. Hydrogen isotopic enrichment: An indicator of biodegradation at a petroleum hydrocarbon contaminated field site. Environmental Science & Technology, 36(11): 2464-2470.

Monitored Natural Attenuation (MNA) of landfill leachate plumes (Banisveld)

Taş, N.; Brandt, B.W.; Braster, M.; van Breukelen, B.M.; Röling, W.F.M., 2018. Subsurface landfill leachate contamination affects microbial metabolic potential and gene expression in the Banisveld aquifer. FEMS Microbial Ecology, 94, fiy156

Meckenstock, R.; Elsner, M.; Griebler, C.; Lueders, T.; Stumpp, C.; Aamand, J.; Agathos, S.; Albrechtsen, H.J.; Bastiaens, L.; Bjerg, P.; Boon, N.; Dejonghe, W.; Huang, W.; Schmidt, S.; Smolders, E.; Sorensen, S.R.; Springael, D.; Van Breukelen, B.M., 2015. Biodegradation: updating the concepts of control for microbial cleanup in contaminated aquifers (Feature article). Environmental Science & Technology, 49, 7073-7081

Brad, T., Obergfell, C., van Breukelen, B.M., van Straalen, N., Roling, W.F.M., 2013. Spatiotemporal variations in microbial communities in a landfill leachate plume. Groundwater Monitoring & Remediation, 33(4), 69-78.

Brad, T., van Breukelen, B.M., Braster, M., van Straalen, N.M. and Roling, W.F.M., 2008. Spatial heterogeneity in sediment-associated bacterial and eukaryotic communities in a landfill leachate-contaminated aquifer. Fems Microbiology Ecology, 65(3): 534-543.

Brad, T., Braster, M., van Breukelen, B.M., van Straalen, N.M. and Roling, W.F.M., 2008. Eukaryotic diversity in an anaerobic aquifer polluted with landfill leachate. Applied and Environmental Microbiology, 74(13): 3959-3968.

Lin, B., Braster, M., Röling, W.F.M., van Breukelen, B.M., 2007. Iron-reducing microorganisms in a landfill leachate-polluted aquifer: complementing culture-independent information with enrichments and isolations. Geomicrobiology Journal, 24: 283-294.

Mouser, P.J., Rizzo, D.M., Röling, W.F.M., van Breukelen, B.M., 2005. A multivariate statistical approach to spatial representation of groundwater contamination using hydrochemistry and microbial community profiles. Environmental Science and Technology, 39(19), 7551- 7559.

Lin, B., Braster, M., van Breukelen, B.M., van Verseveld, H.W., Westerhoff, H.V., Röling, W.F.M., 2005. Geobacteraceae community composition is related to hydrochemistry and biodegradation in an iron-reducing aquifer polluted by a neighboring landfill. Applied and Environmental. Microbiology, 71(10): 5983-5991.

Van Breukelen, B.M., Griffioen, J., 2004. Biogeochemical processes at the fringe of a landfill leachate pollution plume: potential for dissolved organic carbon, Fe(II), Mn(II), NH4 and CH4 oxidation. Journal of Contaminant Hydrology, 73(1-4): 181-205.

Van Breukelen, B.M., Griffioen, J., Röling, W.F.M., Van Verseveld, H.W., 2004. Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume. Journal of Contaminant Hydrology, 70(3-4): 249-269.

Van Breukelen, B.M., Röling, W.F.M., Groen, J., Griffioen, J., Van Verseveld, H.W., 2003. Biogeochemistry and isotope geochemistry of a landfill leachate plume. Journal of Contaminant Hydrology, 65(3-4): 245-268.

Röling, W.F.M., Van Breukelen, B.M., Braster, M., Lin, B., Van Verseveld, H.W., 2001. Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Applied and Environmental. Microbiology, 67(10): 4619-4629.

Röling, W.F.M., Van Breukelen, B.M., Braster, M., Van Verseveld, H.W., 2000. Linking microbial community structure to pollution: Biolog-substrate utilization in and near a landfill leachate plume. Water Science and Technology, 41(12): 47-53.

Boris van Breukelen