Vrachimis, S. G., Eliades, D. G., Taormina, R., Kapelan, Z., Ostfeld, A., Liu, S., ... & Polycarpou, M. M. (2022). Battle of the leakage detection and isolation methods. Journal of Water Resources Planning and Management, 148(12), 04022068.
Bentivoglio, R., Isufi, E., Jonkman, S.N. and Taormina, R., 2023. On the generalization of hydraulic-inspired graph neural networks for spatio-temporal flood simulations (No. EGU23-12952). Copernicus Meetings.
R. Bentivoglio, B. Kerimov, J. A. G. Diaz, E. Isufi, F. Tscheikner-Grati, D. B. Steffelbauer, R. Taormina, Assessing the Performance and Transferability of Graph Neural Network Metamodels for Water Distribution Systems, WSDA / CCWI Joint Conference, 2022.
B. Kerimov, F. Tscheikner-Gratl, R. Taormina, D. Steffelbauer (2022) The Shape of Water Distribution Networks - Describing local structures of water networks via graphlet analysis. 2nd WDSA/CCWI Joint Conference Water Distribution System Analysis Computing and Control in Water Industry . University of Valencia; Valencia. 2022-07-18 - 2022-07-22.
GarzĂłn, A., Bentivoglio, R., Isufi, E., Kapelan, Z., & Taormina, R. (2021, April). Modeling Water Distribution Systems with Graph Neural Networks. In EGU General Assembly Conference Abstracts (pp. EGU21-9378).
van der Kooij, E., Schleiss, M., Taormina, R., Fioranelli, F., Lugt, D., van Hoek, M., ... & Overeem, A. (2021, April). Nowcasting heavy precipitation over the Netherlands using a 13-year radar archive: a machine learning approach. In EGU General Assembly Conference Abstracts (pp. EGU21-12814).
Mavritsakis, P., ten Veldhuis, M. C., Schleiss, M., & Taormina, R. (2021, April). Dry-spell assessment through rainfall downscaling comparing deep-learning algorithms and conventional statistical frameworks in a data scarce region: The case of Northern Ghana. In EGU General Assembly Conference Abstracts (pp. EGU21-8393).
Taormina, R., & Isufi, E. (2020, December). Geometric Deep Learning for Modeling, Prediction and Forecasting in Urban Water Systems. In AGU Fall Meeting Abstracts (Vol. 2020, pp. H188-04).
Taormina, R., Ashrafi, M., Murillo, A., & Galelli, S. (2020, May). Deep Learning-based Surrogate Models for Water Distribution Systems. In EGU General Assembly Conference Abstracts (p. 22576).
M. Yang, E. Isufi, M. T. Schaub and G. Leus, "Simplicial Convolutional Filters," in IEEE Transactions on Signal Processing, vol. 70, pp. 4633-4648, 2022, doi: 10.1109/TSP.2022.3207045.
M. Yang and E. Isufi, Simplicial Trend Filtering, IEEE Asilomar Conference on Signals, Systems and Computations, Pacific Grove, USA, Nov. 2022. (invited paper)
B. Das and E. Isufi, Online Filtering over Expanding Graphs, IEEE Asilomar Conference on Signals, Systems and Computations, Pacific Grove, USA, Nov. 2022.
Y. He, M. Coutino, E. Isufi, and G. Leus, Dynamic Bi-colored Graph Partitioning, EURASIP European Signal Processing Conference (EUSIPCO), Belgrade, Serbia, Aug. 2022. (invited paper)
E. Isufi and M. Yang, Convolutional Filtering in Simplicial Complexes, ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, pp. 5578-5582.
M. Yang, E. Isufi and G. Leus, Simplicial Convolutional Neural Networks, ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, pp. 8847-8851.
Leus, G., Yang, M., Coutino, M., & Isufi, E. (2021, June). Topological Volterra Filters. ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5385-5399). IEEE.
Natali, A., Isufi, E., & Leus, G. (2020, May). Forecasting multi-dimensional processes over graphs. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5575-5579). IEEE.