The Applied Earth Sciences bachelor study programme lasts three years. During your bachelor's you will become acquainted with a fascinating, multifaceted field. 

Academic years are subdivided into four, equal, 10-week educational periods (quarters). Every quarter centres on a theme. Theory, practice and skills are provided in a combined manner on the basis of these themed modules. As is the case in the current programme, the basic courses will continue to be geology, maths, physics and chemistry. Furthermore, you will learn about Applied Earth Sciences applications: raw materials technology, geo-energy engineering, subterranean construction, applied geophysics and petro-physics, environmental engineering, reservoir geology and geoscience & remote sensing. Per quarter you will take various basic sciences and application courses. 

Study schedule

Physics and chemistry
‘Principles of Chemistry’ focusses on chemical processes, such as entropy, enthalpy and thermochemistry. The processes which are assessed in class are clarified by using computer practicals. 

Physics is included in the first year in ‘Mechanics’, which addresses waves, forces and uses the energy balance to solve various mechanical problems.

In the course ‘Electricity and Magnetism’, these two concepts of physical processes are taught.

All these courses require mathematical solutions to solve problems.

‘Mathematics 1’ will teach students how to solve first and second order differential equations.

‘Linear Algebra’ will continue with understanding linear algebra and proving several linear algebra theorems.

‘Probability and Statistics’ is a course spread out over the first two quarters of the year and will assess the basics of the probability theory and statistics.

These courses require you to practice the material at home as it is best understood by intensive practice. 

‘Geology 1’ includes the general knowledge of the system Earth, tools for 3D geometric representation for geological objects and finally methods and techniques for the recognition of fundamental minerals and rocks.

‘Geology 2’ gives a closer look into the geology of North-West Europe and covers various rocks and formations as well as the physical processes that have occurred and are still occurring.

‘Geology 3’ takes students on an excursion to the Belgian Ardennes, Luxembourg and the German Eiffel. You study different rock types and the formation of rocks and geological structures. This course requires the students to integrate all knowledge from the excursion in various assignments.

Applied Earth Sciences
‘Grand Challenges and Applied Earth Sciences’ gives an insight of all the global issues which an Applied Earth Sciences Engineer could have an impact on. Different topics, ranging from global climate change to the tilt of the church in Delft, are included in the form of assignments.

‘Methodology of Geophysics and Remote Sensing’ covers the basics of Applied Geophysics and Remote Sensing principles and includes making various assignments to gain a deeper understanding of the two topics. 

Physics and chemistry
‘Chemical Thermodynamics’ continues upon the chemistry course lectured in the first year. The course consists of lectures and computer assignments, during which the concepts lectured are applied to chemical equations.

‘Instrumentation & Signals with Python’ consists of a lecture part, where the theorem behind signals and instrumentation is taught, and a practical part, which uses the program Matlab to model the concepts taught in class. You learn a programming language and will use these skills in other courses in the bachelor as well.

The last course in this learning goal is ‘Physical Transport Phenomena’, which covers the fundamentals of fluid flow, heat transfer and mass transfer.

‘Mathematics 4’ continues upon concepts of linear algebra and differential equations taught in the first year in the form of lectures and material is practiced at home.

‘Mathematics 5’ covers the fundamentals of numerical analysis. This course is divided into a lecture part and a computer part, where programming is used to solve numerical problems.

‘Sedimentology and Reservoir Geology’ includes topics on various sedimentary environments and the sedimentary processes related to these environments. It includes a laboratory practical where thin sections of cores and rock samples are analysed with microscopes.

‘Geological Fieldwork’ includes three weeks of fieldwork during which the subsurface of a specific area in the South of France is analysed. The surface, in terms of land cover, is evaluated as well and mapped using modelling tools. Lectures prepare the students for the fieldwork and teach them how to model land classes and how to assess the subsurface from looking at the surface.

Applied Earth Sciences
‘Geophysical Methods’ covers reflection seismology, electrical sounding and borehole logging. In order to understand these three concepts, assignments are made and group work is included.

In ‘Soil Mechanics’ applied and theoretical soil mechanics are explained. This course is taught in combination with students from Civil Engineering as the soil is a subject in both bachelor programmes.

‘Rock Mechanics and Rock Engineering’ gives students a basic understanding of rock mechanics and includes a range of rock engineering applications, underground and surface excavations.

‘Geostatistics and Remote Sensing’ teaches students to work with the  programming software QGIS. Students will learn to analyse uncertain spatial data by following  lectures and computer practicals. The examined data is gathered by the students themselves in and around Delft.

A minor is a cohesive unit of courses you can freely choose. Students can broaden their knowledge by following courses in a different subject area or at another university in the Netherlands or abroad. Students can also choose to do a minor at their own faculty to deepen their understanding of a certain topic.

Applied Earth Sciences
‘Mechanics and Transport of Flow through Porous Media’, focusses on the flow of water in the subsurface. Various assignments to understand the concepts of flow in the subsurface are made using the program Matlab.

‘Petro-physics and Image Analysis’ covers the basics of log evaluation and an introduction to measurements on rocks through lectures and assignments.

‘Mineral Resource Geology and Modelling’ covers the fundamental need for resources for society and the growing demand for resources for the energy transition. The course will also include the efficiency and maximal use of resources, global supply and demand and will touch upon the sustainability and circularity of the mineral resources supply in the world.

During the ‘Field Exploration Project’ students have to design their own subsurface engineering project in a group project. Students will work full time on the design and will cover topics, such as environmental risks, economical and societal aspects as well of their sub-surface engineering project as well. The course includes various guest lectures and is concluded with a final report and final presentation.

In order to graduate, students will have to write a thesis. This means you will have to choose an individual research project in the area of Applied Earth Sciences. Students will conduct research independently, write a report and give a presentation about their findings.

Read more about: Admission Requirements

Binding recommendation

TU Delft employs the BSA system: the binding recommendation on the continuation of studies. This means that you must obtain at least 75 per cent of your credits (i.e. 45 of the 60 ECTS) in your first year in order to continue your programme. If you receive a negative binding recommendation on the continuation of studies, you will not be permitted to enroll in this programme again in the next 4 years.

Mathematics & AES

Most high school pupils expect an combination of geography and mathematics when hearing about Applied Earth Sciences. But in practice, the mathematics provides the basis for the programme.

--- Read more ---During the bachelor you follow 5 mathematics courses, but in practically all other subjects you will be needing your mathematical knowledge as well. This knowledge is applied to the subject ‘Earth’. Think about a dyke for example. When water flows under the structure it  decreases the stability of the dyke. Through mathematics you can quantify this water stream and predict how safe the dyke truly is. So by applying the mathematics you can make something visible that you cannot directly see. This way you apply mathematics to the world!

Specific questions

Contact our Academic Counsellors.