This content is being blocked for you because it contains cookies. Would you like to view this content? By clicking here, you will automatically allow the use of cookies.
     

The Department of Imaging Physics (ImPhys) focuses on developing novel, sometimes revolutionary, instruments and imaging technologies. These research products extend existing boundaries in terms of spatial resolution, temporal resolution, and information/data throughput. We are pioneers in developing advanced concepts of computational imaging, a marriage between cleverly designed imaging systems and sophisticated post-processing. 

ImPhys’s profile encompasses a mix of science, engineering and design. While the spectrum of imaging physics is very broad, we focus on a few key fields where we generate impact: Life sciences, Healthcare and High tech industry.

Imaging Physics

     

The Department of Imaging Physics (ImPhys) focuses on developing novel, sometimes revolutionary, instruments and imaging technologies.

News

30 November 2016

NWO ECHO Project Jacob Hoogenboom approved

Title: "Optimized electron-molecule interactions for near-molecular resolution light and electron microscopy". The researchers propose a novel approach: fluorescence microscopy using a beam of energetic electrons. This will allow measuring molecular positions in the structural landscape at electron microscopy resolution. Their approach is enabled by two unconventional steps: (i) Fluorescent molecules will be excited in an electron microscope using low-energy (1-50eV) electrons, probing resonant and near-resonant intramolecular excitation regimes. (ii) Encouraged by recent initial observations of electron-excited fluorescence from green fluorescent protein (GFP) under vacuum, will optimize fluorescent proteins for fluorescence microscopy with focused electron beams. Thus, we will enable electron-excited fluorescence from organic fluorescent molecules commonly used as bio-molecular labels for immuno-targeting, as well as from optimized fluorescent proteins.

30 November 2016

NWO Building Blocks project Jacob Hoogenboom approved

Research project title: "Defining molecular and cellular modulators of cancer immunotherapy by automated high throughput 3D light-electron microscopy". The main goal of the researchers is to identify fundamental mechanisms by which tumor cells modulate their environment to prevent their destruction by the immune system. They will develop state-of-the art microscopy tools to obtain an integrated view on the molecular and cellular factors that affect the behavior of individual immune cells in a 3D mouse model of breast cancer. The results will be of relevance for cancer immunotherapy and establish new microscopy tools.

14 October 2016

OP: Thomas van den Hooven started his BSc project

Thomas has started his BSc project which focusses on the modelling a computational hyperspectral imaging device. His supervisors are Paul Urbach, Yifeng Shao and Matthias Strauch. Most hyperspectral imaging devices ‘scan’ their object in wavelength: a picture is taken for every wavelength and later this data is merged. This device will rather scan the hyperspectral electromagnetic field emitted by the object using a spatial light modulator (SLM): one moving point will scan along the SLM and another point will be used as a reference. The light transmitted through the SLM will then interfere, making it possible to obtain relative phase and amplitude information for each wavelength at each point of the SLM. The advantages of this method are evident, using a fast SLM, the needed interference patterns can be captured relatively quick. Also, the method can in theory process a lot of wavelength at once. Unfortunately, the method also requires a lot of processing power. The goal of this project is to find of this method is feasible to be used as an alternative in hyperspectral imaging.

13 October 2016

OP: Ruben Biesheuvel started his MSc project

Ruben has started his MSc project which focusses on testing different algorithms of retrieving the Zernike Polynomial coefficients that describes a certain wavefront. This is a joint project between the Optics group and the CSI2 group of the DCSC (3mE), with Silvania Pereira and Paolo Pozzi as supervisors. A Shack-Hartmann sensor is widely used to measure the wavefront, but rather than directly measuring it, the Shack-Hartmann sensor is only able to measure the derivatives. For this reason, reconstruction can be troublesome for a quickly varying wavefront. Janssen[1] has found an analytical relation between the slope of the wavefront and Zernike Coefficients to describe the wavefront. The hypothesis is that this method could be more accurate for quickly varying wavefronts. In order to test the accuracy, an adaptive optics setup is built. In the beginning of the project, a deformable membrane mirror will be used in order to introduce specific aberrations in the wavefront, and these aberrations will be measured using the Shack-Hartmann sensor and independently with an interferometer. The algorithms that will be tested are a well-known Least Squares method, an iterative integration method and Janssen’s method. If successful, a spatial light modulator will be used in order to create more extreme cases of quickly varying wavefronts. [1] Janssen, A. J. E. M. "Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials." JOSA A 31.7 (2014): 1604-1613.

This content is being blocked for you because it contains cookies. Would you like to view this content? By clicking here, you will automatically allow the use of cookies.
This content is being blocked for you because it contains cookies. Would you like to view this content? By clicking here, you will automatically allow the use of cookies.

Our PI's

Our Lecturers