Dissertations Wind Energy group

Wind Turbine Design

2), 3), 4), 6), 13), 16), 17), 24), 27), 31), 32), 36)

Wind Conditions

8), 12), 20), 29), 48)

Rotor Aerodynamics

1) 5), 7), 9), 10), 11), 14), 15), 18), 19), 21), 22), 23), 26), 28), 30), 34), 35), 37), 38), 47)

Floating Wind Energy

41)

Kite Power

25), 39), 44), 45)

Aeroacoustics

33), 40), 42), 43), 46), 49), 50)

Kite Power

25), 39), 44), 45)

Wind Turbine Design

2), 3), 4), 6), 13), 16), 17), 24), 27), 31), 32), 36)

Floating Wind Energy

41)

Wind Conditions

8), 12), 20), 29), 47)

Rotor Aerodynamics

1) 5), 7), 9), 10), 11), 14), 15), 18), 19), 21), 22), 23), 26), 28), 30), 34), 35), 37), 38)

Aeroacoustics

33), 40), 42), 43), 46), 48), 49)

Dissertations

1)    van Bussel, GJW. (1995). The aerodynamics of horizontal axis wind turbine rotors explored with asymptotic expansion methods.
http://resolver.tudelft.nl/uuid:3e7c9c17-d050-405e-89f3-f07d7fbcb51b

2)    Kühn, MJ. (2001). Dynamics and design optimisation of offshore wind energy conversion systems.
http://resolver.tudelft.nl/uuid:adc3b032-3dde-4e32-84c3-7b8e181e5263

3)    Cheng, PW. (2002). A reliability based design methodology for extreme responses of offshore wind turbines.
http://resolver.tudelft.nl/uuid:8ec622c5-daa3-4c4a-b9e5-a8cd6b97744e

4)    van der Tempel, Jan (2006). Design of Support Structures for Offshore Wind Turbines.
http://resolver.tudelft.nl/uuid:512bb0d2-fddf-4e00-8d7c-e3e7e3827a6b

5)    Mertens, S. (2006). Wind Energy in the built environment - concentrator effects of buildings. Multi-Science.
http://resolver.tudelft.nl/uuid:959694f4-6666-488a-8754-6c58124f4a10

6)    Veldkamp, HF. (2006). Chances in Wind Energy: A probabilistic approach to wind turbine fatigue design. Duwind.
http://resolver.tudelft.nl/uuid:f4a46812-8ad7-44e7-a04b-3e43d4e67fe4

7)    Sant, A. (2007). Improving BEM-based aerodynamic models in wind turbine design codes.
http://resolver.tudelft.nl/uuid:4d0e894c-d0ad-4983-9fa3-505a8c6869f1

8)    Bierbooms, WAAM. (2009). Constrained stochastic simulation of wind gusts for wind turbine design.
http://resolver.tudelft.nl/uuid:f1d17514-77c0-4ed1-88ff-c46a1006f66d

9)    Simao Ferreira, CJ. (2009). The near wake of the vawt - 2d and 3d views of the vawt aerodynamics.
http://resolver.tudelft.nl/uuid:ff6eaf63-ac57-492e-a680-c7a50cf5c1cf

10)    Haans, W. (2011). Wind turbine aerodynamics in yaw - unravelling the measured rotor wake.
http://resolver.tudelft.nl/uuid:57f0cea4-4e05-47bf-8f53-fb1d6e36d39f

11)    Barlas, A. (2011). Active aerodynamic load control on wind turbines - Aeroservoelastic modeling and wind tunnel experiments.
http://resolver.tudelft.nl/uuid:6918a4d0-2b75-44e6-bf33-2822d7c2d264

12)    Sathe, AR. (2012). Influence of wind conditions on wind turbine loads and measurement of turbulence using lidars.
http://resolver.tudelft.nl/uuid:415fad86-a326-4898-a495-343b41ea033b

13)    Ashuri, T. (2012). Beyond classical upscaling: Integrated aeroservoulastic design and optimization of large offshore wind turbines.
https://doi.org/10.4233/uuid:d10726c1-693c-408e-8505-dfca1810a59a

14)    Schepers, JG. (2012). Engineering models in wind energy aerodynamics. Development, implementation and analysis using dedicated aerodynamic measurements.
https://doi.org/10.4233/uuid:92123c07-cc12-4945-973f-103bd744ec87

15)    Micallef, D. (2012). 3D flows near a HAWT rotor: A dissection of blade and wake contributions.
https://doi.org/10.4233/uuid:ca471701-2817-4a36-9839-4545c1cceb45

16)    Zaayer, MB. (2013). Great expectations for offshore wind turbines - Emulation of wind farm design to anticipate their value for customers.
https://doi.org/10.4233/uuid:fd689ba2-3c5f-4e7c-9ccd-55ddbf1679bd

17)    Mast, EHM. (2014). Scenarios for offshore wind development in the Netherlands - An agent-based modelling approach.
https://doi.org/10.4233/uuid:fda3beda-4f43-4055-9e61-78610bfd14cb

18)    Bernhammer, LO. (2015). Smart wind turbine: Analysis and autonomous flap.
https://doi.org/10.4233/uuid:b91d9697-d800-417b-bb7e-c5adb00c5e2b

19)    Lignarolo, L. (2016). On the turbulent mixing in horizontal axis wind turbine wakes.
https://doi.org/10.4233/uuid:057fa33f-82a3-4139-beb8-53f184cd1d57

20)    Holtslag, M. (2016). Far offshore wind conditions in scope of wind energy.
https://doi.org/10.4233/uuid:3c66f401-6cff-4273-aa49-df4274ba767f

21)    Akay, B. (2016). The root flow of horizontal axis wind turbine blades: Experimental analysis and numerical validation.
https://doi.org/10.4233/uuid:2a3f9993-d406-42ee-9d64-57da3fbc0d12

22)    Balbino Dos Santos Pereira, R. (2016). Active Stall Control of Horizontal Axis Wind Turbines: A dedicated study with emphasis on DBD plasma actuators.
https://doi.org/10.4233/uuid:e1462fab-b35c-4506-aa93-45d37eaf7872

23)    Tescione, G. (2016). On the aerodynamics of a vertical axis wind turbine wake: An experimental and numerical study.
https://doi.org/10.4233/uuid:86ac7352-46b8-4c2d-9014-817472d80174

24)    Ferede, E. (2016). Static aeroelastic optimization of composite wind turbine blades using variable stiffness laminates: Exploring twist coupled composite blades in stall control.
https://doi.org/10.4233/uuid:b4fe0ca4-b8c7-4e23-a2f1-247ac3b61aeb

25)    Fechner, U. (2016). A Methodology for the Design of Kite-Power Control Systems.
https://doi.org/10.4233/uuid:85efaf4c-9dce-4111-bc91-7171b9da4b77

26)    Navalkar, S. (2016). Iterative data-driven load control for flexible wind turbine rotors.
https://doi.org/10.4233/uuid:cf1e2110-0ce7-4cc1-956b-f221d5f7b605

27)    Jarquin Laguna, A. (2017). Centralized electricity generation in offshore wind farms using hydraulic networks.
https://doi.org/10.4233/uuid:9a8812d1-d152-4a68-bd17-c88261f06481

28)    Zhang, Y. (2017). Wind turbine rotor aerodynamics: The IEA MEXICO rotor explained.
https://doi.org/10.4233/uuid:f8112b0f-d697-4e5c-bbff-ea7eae5ab50c

29)    Bos, R. (2017). Extreme gusts and their role in wind turbine design.
https://doi.org/10.4233/uuid:d6097e3a-1cdd-4845-a71c-90f469d28b7a

30)    Yu, W. (2018). The wake of an unsteady actuator disc.
https://doi.org/10.4233/uuid:0e3a2402-585c-41b1-81cf-a35753076dfc

31)    Hegberg, T. (2019). Fast Aeroelastic Analysis and Optimisation of Large Mixed Materials Wind Turbine Blades.
https://doi.org/10.4233/uuid:643ddf12-97d3-48a1-9742-b4dd22f16164

32)    Sanchez Perez Moreno, S. (2019). A guideline for selecting MDAO workflows with an application in offshore wind energy.
https://doi.org/10.4233/uuid:ea1b4101-0e55-4abe-9539-ae5d81cf9f65

33)    Küçükosman, C. (2019). Semi-analytical approaches for the prediction of the noise produced by ducted wind turbines.
https://doi.org/10.4233/uuid:b749675c-edb1-4355-ba09-bf46278077d0

34)    De Oliveira Andrade, G. (2019). Aerodynamic Perspectives on Wind Energy Efficiency.
https://doi.org/10.4233/uuid:0981a422-4927-4d07-9e40-a99b7e93779b

35)    Baldacchino, D. (2019). Vortex Generators for Flow Separation Control: Wind Turbine Applications.
https://doi.org/10.4233/uuid:99b15acb-e25e-4cd9-8541-1e4056c1baed

36)    van den Bos, L. (2020). Quadrature Methods for Wind Turbine Load Calculations. Delft University of Technology.
https://doi.org/10.4233/uuid:0ed85902-051f-49a9-a99d-dad082fea758

37)    Dighe, V. (2020). Ducted wind turbines revisited: A computational study.
https://doi.org/10.4233/uuid:56111690-faa8-4d98-9aba-d4a43fd5e160

38)    De Tavernier, D. A. M. (2021). Aerodynamic advances in vertical-axis wind turbines.
https://doi.org/10.4233/uuid:7086f01f-28e7-4e1b-bf97-bb3e38dd22b9

39)    Rapp, S. (2021). Robust Automatic Pumping Cycle Operation of Airborne Wind Energy Systems.
https://doi.org/10.4233/uuid:ab2adf33-ef5d-413c-b403-2cfb4f9b6bae

40)    Rubio Carpio, A. (2021). Innovative Permeable Materials for Broadband Trailing-Edge Noise Mitigation.
https://doi.org/10.4233/uuid:fd3d84a7-c162-4cd4-8b19-bee53e00505f

41)    Dong, J. (2021). A free wake vortex model for floating wind turbine aerodynamics.
https://doi.org/10.4233/uuid:48b0221c-534f-4bdd-8b0f-b529375ec94a

42)    Romani, G. (2022). Computational aeroacoustics of rotor noise in novel aircraft configurations.
https://doi.org/10.4233/uuid:5d36b4de-8593-4f7e-bc92-a7ae175a0900

43)    Teruna, C. (2022). Aerodynamic Noise Reduction with Porous Materials.
https://doi.org/10.4233/uuid:260cd874-c1ed-4155-bfdc-cf7fc3813ca6

44)    Thedens, P. (2022). An integrated aero-structural model for ram-air kite simulations.
https://doi.org/10.4233/uuid:16e90401-62fc-4bc3-bf04-7a8c7bb0e2ee

45)    Folkersma, MAM. (2022). Aeroelasticity of Membrane Kites: Airborne Wind Energy Applications
https://doi.org/10.4233/uuid:eae39f5a-49bc-438b-948f-b6ab51208068

46)    Rego, Leandro (2022). Aeroacoustics of Jet-Surface Interaction and Passive Solutions for Mitigating Jet-Installation Noise
https://doi.org/10.4233/uuid:a50e3a9c-af3a-4e4f-836c-80f70c75847c

47)    Huang, M. (2023). Wake and wind farm aerodynamics of vertical axis wind turbines.
https://doi.org/10.4233/uuid:14619578-e44f-45bb-a213-a9d179a54264

48)    Cheneka, B.R. (2023). Wind Power Ramps: Characterisation, Forecasting and Future Projection
https://doi.org/10.4233/uuid:6548c067-4902-4ab3-ab7b-fdec61c3a8c9

49)    Yunus, F. (2023). Methodologies and algorithms for sound propagation in complex environments with application to urban air mobility: A ray acoustics approach
https://doi.org/10.4233/uuid:72d10b7a-6790-41fc-9b15-26f9cccdb77f

50)    Lima Pereira, L.T. (2023). Physics of broadband noise reduction by serrated trailing edges
https://doi.org/10.4233/uuid:a7b16311-35f5-4819-9d95-5ff1f8cae84f