So far my group has more than 50 alumni with a variety of interesting projects:

  1. Breysse, R. Engineering sucrose assimilation to increase ATP conservation in Escherichia coli, EPFL Lausanne, 2018
  2. van Renselaar, J. Continuous NADH-driven accumulation of polyhydroxybutyrate in Escherichia coli, TU Delft, 2017
  3. Gerlofsma, J. Carbon limitation studies of poly-3-hydroxybutyrate production in a redox-modified strain of Escherichia coli, TU Delft, 2017
  4. van Wanrooij, N. Oxygen-limitation studies in polyhydroxybutyrate production in redox-modified E. coli, TU Delft, 2017
  5. Quakkelaar, C. Structural and kinetic studies of acetoacetyl-CoA reductases with different cofactor specificities, TU Delft, 2017
  6. Hensen, A., Studying ATP conservation in Escherichia coli under anaerobic conditions utilising sucrose, TU Delft, 2017
  7. Vogelaar, T. Engineering the sucrose assimilation in Escherichia coli K-12, TU Delft, 2017
  8. Schubiger, F. E. 1,4-butanediol-producing Escherichia coli under Chemostat and Rapid Intermittent Feeding, ETH Zurich, 2017.
  9. Verhagen, K. Grow or store? Exploring metabolic decision making under feast/famine conditions using 13C tracer, TU Delft, 2017
  10. Schmidtchen, L. Introduction of Non-Oxidative Glycolysis in Escherichia coli, TU Delft, 2017
  11. Romero, A. F. Metabolic Engineering for Anaerobic PHB Production in E. coli, TU Delft, 2017
  12. Smids, A. Sucrose metabolism in E.coli. coli for anaerobic PHB production TU Delft, 2016
  13. Wijaya AAW: Quasi-steady state and Dynamic 13C Flux Analysis in Plasticicumulans acidivorans. MSc thesis,  TU Delft; 2016.
  14. Venema T: Towards Quantitative proteomics: Analysis of fragmentation during PURE protein synthesis. MSc thesis,  TU Delft; 2016.
  15. Gabriel, C. Effects of a feast/famine regime on E.coli fermentation, University of Porto, Portugal, University of Porto, Portugal, 2016 (ERASMUS internship report)
  16. van der Wall H: Stable phosphorus removal from wastewaters – An integrated bioinformatics & experimental approach to unravel metabolic network function & regulation. MSc thesis,  TU Delft; 2016.
  17. van Berkum MC: Experimental analysis of yield favoring evolution. MSc thesis,  TU Delft; 2016.
  18. Schellekens R: Monitoring PAO enrichment through online data analysis. BSc thesis,  TU Delft; 2016.
  19. Sangüesa-Ferrer H: Improvement of PHB production in E. coli by engineering the EMP pathway. MSc thesis,  TU Delft; 2016.
  20. Mirandela-Gabriel C: E. coli metabolism under dynamic cultivation conditions. MSc thesis,  ERASMUS internship report; 2016.
  21. Hansen SRT: Flux Dynamics of the Glucose Storage Metabolism of Saccharomyces cerevisiae during G0-G1 transition. MSc thesis,  Erasmus internship report; 2016.
  22. Grootendorst J: Uncovering basic aspects of E. coli metabolism while constructing a platform for PHB production. BSc thesis, TU Delft; 2016.
  23. Gaspar AA: Quasi-steady state and Dynamic 13C Flux Analysis in Phosphate Accumulating Organisms. Erasmus Internship; 2016.
  24. Buijs Y: E.coli metabolism under dynamic conditions. MSc thesis,  TU Delft; 2016.
  25. Basalo-Vázquez S: Modifying the redox metabolism in Escherichia coli through ED pathway. MSc thesis,  TU Delft; 2016. 
  26. van Helmond W: Towards Quantitative Proteomics: The use of 13C labelled proteins from Saccharomyces cerevisiae as internal standard for protein quantification using mass spectrometry. MSc thesis,  TU Delft; 2015.
  27. Rodrian M: Lactate Transport studies in Saccharomyces cerevisiae. BSc thesis, HS Mannheim, Germany; 2015.
  28. Pinheiro F: Free energy conservation in Saccharomyces cerevisiae: Yield Selection Approach. MSc thesis,  TU Delft/Universidade de Minho; 2015.
  29. Mahabier W: IME290 strain characterization: Towards increasing valine production in Saccharomyces cerevisiae. MSc thesis,  TU Delft; 2015.
  30. de Reus E: QPROT: Investigating the use of the PURE system for absolute quantitative proteomics by 13C-IDMS, as first steps of the QPROT project. MSc thesis,  TU Delft; 2015.
  31. Akkermans KM: Analysis of redox metabolism in PAO I. MSc thesis,  TU Delft; 2015.
  32. Koper D: Determining the dynamic intracellular flux profile of a Saccharomyces cerevisiae ΔTPS1 mutant. MSc thesis,  TU Delft; 2014.
  33. Keijzer N: Unraveling transport processes in S. cerevisiae: The proton motive force project. BSc thesis, TU Delft; 2014.
  34. Droog J: Lactic Acid stress in Saccharomyces cerevisiae. BSc thesis, TU Delft; 2014.
  35. de Bruin S: Ammonium transport for increased anaerobic amino acid production. MSc thesis,  TU Delft; 2014.
  36. Das VL: Mathematical modelling of yeast glycolysis including cytosolic phosphate. MSc thesis,  TU Delft; 2014.
  37. da Costa Esteves MJ: Modeling the metabolic response during cyclic perturbations in Saccharomyces cerevisiae: comparison between the wild type and a strain unable to consume trehalose. MSc thesis,  Universidade do Minho, Portugal; 2014.
  38. van der Hoek C: Modeling temperature dependency of central carbon metabolism and storage in S. cerevisiae. MSc thesis,  TU Delft; 2013.
  39. van der Hoek C: A temperature dependent glycolysis model for S. cerevisiae based on the Anymol model. MSc thesis,  TU Delft; 2013.
  40. Schumacher R: Metabolic response to intensive Feast/famine cycles in S.cerevisiae monitored by 13C tracers. MSc thesis,  TU Braunschweig, Germany; 2013.
  41. Sassen T: Examining a phosphate sensor reaction in yeast: The influence of cytosolic phosphate concentration on glycolysis in Saccharomyces cerevisiae as a proof of principle of a sensor reaction involving maltose phosphorylase. MSc thesis,  TU Delft; 2013.
  42. Post M: The metabolic impact of a cobb knockout in E. coli: Determination of intracellular fluxes with transient state isotopomer labelling using 13C acetate as sole carbon source. BSc thesis, TU Delft; 2013.
  43. Mulders M: Intracellular distribution of Amino acids: Testing methods for the isolation of vaccuols. BSc thesis, TU Delft; 2013.
  44. Le THT: Exploring the cytosolic ATP/ADP ratio sensors in Saccharomyces cerevisiae. BSc thesis, TU Delft; 2013.
  45. Duinsteijn I: Glycogen and Trehalose degration negative strains under dynamic cultivation conditions. MSc thesis,  TU Delft; 2013.
  46. van Wijngaarden L: Amino acid production at low potassium conditions. BSc thesis, TU Delft; 2012.
  47. van Schie KC: Modeling gene expression in the PURE system, an in-vitro protein synthesis kit. MSc thesis,  TU Deflt (BN/BT); 2012.
  48. van Dijk M: Comparison of different fast feast famine regimes in Penicillium chrysogenum. BSc thesis, TU Delft; 2012.
  49. Schuffelen R: Dynamics of storage carbohydrates in S.cerevisiae: a shift-down experiment. BSc thesis, TU Delft 2012.
  50. Keijzers L: Alanine uptake and export mechanism in S. cerevisiae. BSc thesis, TU Delft; 2012.
  51. lo Conte R: Temperature impact on storage metabolism. MSc thesis,  TU Delft; 2011.
  52. Hanemaaijer M: 13C metabolic flux analysis in S. cerevisiae: Relation of storage and central carbon metabolism under aerobic growth conditions. MSc thesis,  TU Delft; 2011.
  53. de Sousa A: Analysis of the kinetic response of S. cerevisiae to dynamic feast/famine conditions. MSc thesis,  Universidad de Minho, Portugal; 2011.
  54. Cueto-Rojas H: Analysis of the anaerobic metabolism for the production of fine chemicals. MSc thesis,  TU Delft; 2011.
  55. Wink S: Modeling the kinetics of storage metabolism during dynamic feast famine cycles in P. chrysogenum. MSc thesis,  TU Delft; 2010.
  56. Hillen RC: Hybrid Modeling in Systems Biology: Piecewise affine reconstruction of flux profiles and enzyme kinetics from in-vivo 13C labeling experiments. MSc thesis,  TU Delft (DSCS/BT); 2010.
  57. Haverkorn D: Modeling the temperature dependency of enzyme kinetics in S cerevisiae. MSc thesis,  TU Delft; 2010.
  58. van der Wulp B: Characterization of the Agilent GC-MS system. Edited by; 2009.
  59. Heemskerk MM: Genome scale compartmented model of P. chrysogenum for stationary carbon labeling experiments: Optimal experimental design. MSc thesis,  TU Delft; 2009.
  60. Buijs NAA: Unravelling the fate of carbon in Penicillium chrysogenum using 13C labelled tracers during intermittent feeding cycles. MSc thesis,  TU Delft; 2009.
  61. Tillack J: Kinetikbasierte Modellierung und Simulation isotopisch instationärer metabolischer Netzwerke. MSc thesis,  Otto-von-Guericke Universität Magdeburg, Germany; 2008.