Multimedia Computing Group

The Multimedia Computing (MMC) Group develops algorithms for enriching, accessing, and searching large quantities of data. Such algorithms lie at the core of tomorrows’ search engines and large-scale recommender systems. The group sets its focus on developing systems that are oriented to the needs of users, and that solve the challenges faced by large-scale online content and service providers. Multimedia data analytics also has applications in the full range of fields that benefit from data science, including health, telecom, and geosciences.

The group has a track record of developing technologies that make possible optimized interaction with large collections of multimedia data (e.g., images, video, and music) in real-world contexts (e.g., within social networks). Our work requires a combination of mathematical models, machine learning techniques, and practical skills in algorithm development and evaluation. The members of the MMC group share expertise in multimedia information retrieval, recommender systems, multimedia signal processing, social network analysis, human computation (crowdsourcing) and quality of experience. Collaborations include joint work with researchers from Yahoo Labs, Telefónica Research, Microsoft Research and Google.

     

The work being carried out in the MMC Group encompasses a broad palette of research directions including:

  • Multimedia content analysis and search
    • Semantics extraction from multimedia data
    • Multi-modal query expansion
    • Multi-source search result reranking
  • Multimedia information retrieval in a social network context
    • Modeling information propagation and relationships in social networks
    • Collaborative recommender systems
    • Social recommendation
  • Interaction with multimedia content
    • (Affective) User profiling
    • User (search/uploader) intent
    • Query failure prediction
    • Quality of multimedia experience
  • Multimedia content management
    • Multimedia databases and dataspaces
    • Entity retrieval

More information about the research directions and activities of the MMC Group can be found under research projects or on the sites of group members.

     

News

12 mei 2019

Odette Scharenborg Associate Editor

Odette Scharenborg has been appointed as an Associate Editor of the IEEE journal Signal Processing Letters. The IEEE journal Signal Processing Letters is one of the flagship journals of the IEEE Signal Processing Society

12 mei 2019

The Multimedia Computing Group cordially invites you to a Music Information Retrieval morning seminar, Wednesday, May 15, Social Data Lab.

The Artificial Intelligence Lab at the Otto von Guericke University Magdeburg is dedicated to improving the cognitive abilities of machines and reducing the friction in human-machine interaction. We investigate novel signal processing and deep learning algorithms for the analysis of sensory data and investigate human-centric approaches to interacting with machines such as speech, EEG or eye tracking. This opens up richer communication channels to remedy the interface bottleneck between human and machine and introduces feedback mechanisms that make communication more robust.

05 mei 2019

’10 seconds of fame’ for Odette Scharenborg

’10 seconds of fame’ for Odette Scharenborg in a RAI-item on Sicilian TV about the International Workshop on Spoken Dialogue Systems Technology in Siracusa, Italy. In the fragment, Odette explains how machines can learn to recognise words from neural signals.

30 april 2019

Article in Nature's Scientific Reports: Information Diffusion Backbones in Temporal Networks by X. Zhan, A. Hanjalic and H.Wang

Progress has been made in understanding how temporal (time-evolving) network features affect the percentage of nodes reached by an information diffusion process, i.e. the prevalence of information, epidemic and opinion.

14 april 2019

Odette Scharenborg published in Speech Communication

The paper provides a systematic review of the literature on non-native spoken-word recognition in the presence of background noise, and posits an updated theory on the effect of background noise on native and non-native spoken-word recognition.

24 maart 2019

Cynthia Liem Tweeting for @NL_Wetenschap

In the week of March 25, Cynthia Liem will be Tweeting through this account, that by now has almost 7500 followers. Follow @NL_Wetenschap to learn more about Cynthia’s activities throughout the week!

17 maart 2019

Information Diffusion Backbones in Temporal Networks

Xiu-Xiu Zhan is giving a contributed talk “Information Diffusion Backbones in Temporal Networks” at Young European Probabilists (YEP 2019) workshop "Information diffusion on random graphs".