Extracellular Matrix Mechanics

Project Description

We aim to understand the molecular origin of the remarkable strength, nonlinearity, plasticity, and poroelasticity of the extracellular matrix. To this end, we reconstitute synthetic tissues from purified extracellular proteins (fibrin, collagen, hyaluronan and other glycosaminoglycans). We combine quantitative imaging (confocal, EM, AFM) with force measurements at different length scales to link the molecular-scale properties of biomolecules to the macroscopic mechanical behavior of the tissue. Our findings are relevant for regenerative medicine and for understanding wound healing.

Contact: Iain Muntz

Representative publications:

  • Bart E. Vos, Cristina Martinez-Torres, Federica Burla, John W. Weisel, Gijsje H. Koenderink, Revealing the molecular origins of fibrin's elastomeric properties by in situ X-ray scattering, Acta Biomaterialia, Volume 104, 2020, Pages 39-52, ISSN 1742-7061, doi.org/10.1016/j.actbio.2020.01.002
  •  C. Martinez-Torres, F. Burla, C. Alkemade, G.H. Koenderink, Revealing the Assembly of Filamentous Proteins with Scanning Transmission Electron Microscopy, PLOS One 14(12):e0226277 (2019)
  • F. Burla, J. Tauber, S. Dussi, J. van der Gucht, G.H. Koenderink, Stress management in composite biopolymer networks, Nature Physics 15: 549–553 (2019)
  • Sharma, A.J. Licup, R. Rens, M. Vahabi, K.A. Jansen, G.H. Koenderink, F.C. MacKintosh, Strain-driven criticality underlies nonlinear mechanics of fibrous networks, Physical Review E, 94 (4-1): 042407 (2016)