Programme in detail

The Signals & Systems programme is divided in eight quarters. At the end of each quarter students carry out exams. In the first year you will spend more time on core courses, relevant to the track you have chosen.  The main core consist of two compulsory courses called “Introduction to Electrical Engineering” and “Systems Engineering” as well as 9 fundamental courses on topics such as electromagnetics, networking, signal processing and computing systems. You have to select at least 2 of these fundamentals.

The next tier of the programme is the track core, which contains fundamental courses for your specialisation track, such as Estimation and Detection, Information Theory, Wireless Communications, Wavefield Imaging, Applied Convex Optimization, Microwave, Radar & Remote Sensing. In this tier, you have to select at least 3 courses.

The third tier contains the specialization courses, which enable a deep specialisation for the optimal execution of your thesis project. The free electives allow technical and non-technical courses, also from other faculties and universities, such as entrepreneurship, language and additional presentation courses, an internship or participation in an exchange program.

First Year (60 EC)
1st quarter 2nd quarter 3rd quarter 4th quarter
Main core courses Main core courses Main core courses Track core courses
Track core courses Track core courses Specialisation courses
Specialisation courses Specialisation courses Specialisation courses
 
Second Year (60 EC)
1st quarter 2nd quarter 3rd quarter 4th quarter
Free elective courses Graduation project (45 EC)
Common Core (18 EC)
Profile Orientation and Academic Skills 3 EC
Systems Engineering 5 EC
Choose 2 out of 9 (more is allowed)
Advanced Computing Systems 5 EC
Analog Circuit Design Fundamentals 5 EC
Control System Design 5 EC
Electromagnetics 5 EC
Machine Learning for Electrical Engineering 5 EC
Measurement and Instrumentation 5 EC
Networking 5 EC
Statistical Digital Signal Processing and Modeling 5 EC
Wireless Systems for Electrical Engineering Applications5 EC
 
Track core ( max 13 EC)
Applied Convex Optimization3 EC
Data Compression: Entropy and Sparsity Perspectives3 EC
Estimation and Detection5 EC
Integrated Circuits and MEMS Technology4 EC
Integrated Circuits for RF/Wireless Applications5 EC
Modern Computer Architectures5 EC
 
Specialisation courses (at least 24 EC)
 
Free Electives (15 EC)
 
Thesis Project (45 EC)

More information can be found at studyguide.tudelft.nl.


Specialisations

Audio and Acoustic Signal Processing
Focuses on such topics as multimedia data compression, audio/speech processing, distributed signal processing, acoustic signal processing, distributed signal processing, acoustic signal processing, speech enhancement, sensor localization, pattern recognition and security. The research and coursework cover a broad scope of theory and algorithms in signal processing, information theory and cryptography.

Signal Processing for Communications
Focuses on such topics as statistical signal processing, array processing and distributed signal processing. It provides a wide range of computational tools and algorithms. Applications are related to wireless communications, underwater communication and sensor networks, as well as to large sensor arrays for radio astronomy and geophysics.

Biomedical Signal Processing
Focuses on signal processing for the acquisition, modelling, analysis and processing of biomedical signals. These can be natural signals from the body – as with signals measured in the heart or brain (EEG, ECG) – or multichannel signals from imaging systems (e.g. ultrasound, MRI or photo-acoustic imaging).

Signal Processing for Remote Sensing and Radar Systems
Focuses on microwave system design, analogue and digital processing of microwave signals, signal processing for typical remote sensing applications (antennaarray pattern synthesis; space-time adaptive signal processing in ultra-wideband arrays; detection and feature extraction; tracking and navigation; classification, and imaging) that are performed at either a single node or at a distributed sensing.

Systems and Control
Focuses on the development of mathematical models of complex dynamic systems, as well as on the use of these models to optimise/control their behaviour in feed-forward and feedback configurations. The strength of feedback control rests in its capacity for dealing with uncertainty. This makes it possible to design low-complexity controllers for achieving high performance in controlled complex systems.

The five specialisation profiles defined here are intended as guidelines. Students are free to compose their own specialisations by choosing from a list of courses, or choose one of the specialisations of the other Electrical Engineering Tracks.