Technische Natuurwetenschappen

24 september 2018

Newly discovered magnetic state could lead to green IT solutions

Magnetic skyrmions are magnetic swirls that have the potential to revolutionize information technology, since they may lead to new solutions combining low-energy consumption with high-speed computational power and high-density data storage. A team from Delft University of Technology, in collaboration with the University of Groningen and Hiroshima University, has now discovered a new, unexpected magnetic state, which is related to these skyrmions. The findings open up new ways to create and manipulate complex magnetic structures in view of future IT applications.

18 september 2018

Graphene tunnelling junctions: beyond the breaking point

Molecular electronics is a burgeoning field of research that aims to integrate single molecules as active elements in electronic devices. Obtaining a complete picture of the charge transport properties in molecular junctions is the first step towards realizing functionality at the nanoscale. Researchers from Delft University of Technology have now studied the charge transport in a novel system, the ‘graphene mechanical break junction’, which for the first time allowed direct experimental observation of quantum interference effects in bilayer graphene as a function of nanometer-displacements. This new platform could potentially be used for electronic fingerprinting of biomolecules, from DNA to proteins, which in turn can have important implications for the diagnosis and treatment of diseases. The research was partly funded by the Graphene Flagship.

18 september 2018

Delftse onderzoekers rekken grenzen van de lichtmicroscopie op

Het onderzoeksveld van de lichtmicroscopie heeft zich de afgelopen jaren snel ontwikkeld. Door de uitvinding van een techniek genaamd superresolutie-fluorescentiemicroscopie kunnen sinds kort zelfs de kleinere onderdelen van een levende cel in beeld worden gebracht. Met een slimme aanpassing aan de superresolutie-techniek hebben onderzoekers van de TU Delft de grenzen van wat mogelijk is nu nog verder opgerekt. Waar eerder objecten van maximaal 10 tot 20 nanometer in beeld konden worden gebracht, maakt hun methode het mogelijk om scherp stellen op structuren van maar liefst 3 nanometer.

In de spotlight