Imaging Physics

The department of Imaging Physics  develops novel instrumentation and imaging technologies. We are driven by our scientific curiosity and problem oriented nature in research with a strong connection to industry and to educate future leaders in the field of imaging science.

The scientific staff of the department is formed by independent Principle Investigators or Educators.

05 December 2016

Alberico Sabbadini joined our group as PhD student

Alberico started his PhD on 1 December. He will work on a method for early diagnosis of stiffening of the heart, which employs non-invasive ultrasound imaging and allows early identification of (patients at risk of developing) heart failure. The new method is based on the natural shear waves in the heart muscle, which find their origin in the natural “noise-like” mechanical excitations caused by the beating heart, flowing blood, breathing, etc. The propagation velocity of the resulting natural shear waves is dependent on the local stiffness of the heart muscle.

30 November 2016

NWO ECHO Project Jacob Hoogenboom approved

Title: "Optimized electron-molecule interactions for near-molecular resolution light and electron microscopy". The researchers propose a novel approach: fluorescence microscopy using a beam of energetic electrons. This will allow measuring molecular positions in the structural landscape at electron microscopy resolution. Their approach is enabled by two unconventional steps: (i) Fluorescent molecules will be excited in an electron microscope using low-energy (1-50eV) electrons, probing resonant and near-resonant intramolecular excitation regimes. (ii) Encouraged by recent initial observations of electron-excited fluorescence from green fluorescent protein (GFP) under vacuum, will optimize fluorescent proteins for fluorescence microscopy with focused electron beams. Thus, we will enable electron-excited fluorescence from organic fluorescent molecules commonly used as bio-molecular labels for immuno-targeting, as well as from optimized fluorescent proteins.

13 October 2016

OP: Ruben Biesheuvel started his MSc project

Ruben has started his MSc project which focusses on testing different algorithms of retrieving the Zernike Polynomial coefficients that describes a certain wavefront. This is a joint project between the Optics group and the CSI2 group of the DCSC (3mE), with Silvania Pereira and Paolo Pozzi as supervisors. A Shack-Hartmann sensor is widely used to measure the wavefront, but rather than directly measuring it, the Shack-Hartmann sensor is only able to measure the derivatives. For this reason, reconstruction can be troublesome for a quickly varying wavefront. Janssen[1] has found an analytical relation between the slope of the wavefront and Zernike Coefficients to describe the wavefront. The hypothesis is that this method could be more accurate for quickly varying wavefronts. In order to test the accuracy, an adaptive optics setup is built. In the beginning of the project, a deformable membrane mirror will be used in order to introduce specific aberrations in the wavefront, and these aberrations will be measured using the Shack-Hartmann sensor and independently with an interferometer. The algorithms that will be tested are a well-known Least Squares method, an iterative integration method and Janssen’s method. If successful, a spatial light modulator will be used in order to create more extreme cases of quickly varying wavefronts. [1] Janssen, A. J. E. M. "Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials." JOSA A 31.7 (2014): 1604-1613.

13 October 2016

OP: Best poster prize at EOSAM for Matthias Strauch

During the Annual meeting Matthias presented his poster on Surface harmonics on liquid lenses. He won an award which consists of a diploma and a honorarium of €500,00.

This content is being blocked for you because it contains cookies. Would you like to view this content? By clicking here, you will automatically allow the use of cookies.
This content is being blocked for you because it contains cookies. Would you like to view this content? By clicking here, you will automatically allow the use of cookies.

Our PI's

Our Lecturers

In the spotlight

/* */