This content is being blocked for you because it contains cookies. Would you like to view this content? By clicking here, you will automatically allow the use of cookies.
     

The Department of Imaging Physics (ImPhys) focuses on developing novel, sometimes revolutionary, instruments and imaging technologies. These research products extend existing boundaries in terms of spatial resolution, temporal resolution, and information/data throughput. We are pioneers in developing advanced concepts of computational imaging, a marriage between cleverly designed imaging systems and sophisticated post-processing. 

ImPhys’s profile encompasses a mix of science, engineering and design. While the spectrum of imaging physics is very broad, we focus on a few key fields where we generate impact: Life sciences, Healthcare and High tech industry.

Imaging Physics

     

The Department of Imaging Physics (ImPhys) focuses on developing novel, sometimes revolutionary, instruments and imaging technologies.

News

13 October 2016

OP: Ruben Biesheuvel started his MSc project

Ruben has started his MSc project which focusses on testing different algorithms of retrieving the Zernike Polynomial coefficients that describes a certain wavefront. This is a joint project between the Optics group and the CSI2 group of the DCSC (3mE), with Silvania Pereira and Paolo Pozzi as supervisors. A Shack-Hartmann sensor is widely used to measure the wavefront, but rather than directly measuring it, the Shack-Hartmann sensor is only able to measure the derivatives. For this reason, reconstruction can be troublesome for a quickly varying wavefront. Janssen[1] has found an analytical relation between the slope of the wavefront and Zernike Coefficients to describe the wavefront. The hypothesis is that this method could be more accurate for quickly varying wavefronts. In order to test the accuracy, an adaptive optics setup is built. In the beginning of the project, a deformable membrane mirror will be used in order to introduce specific aberrations in the wavefront, and these aberrations will be measured using the Shack-Hartmann sensor and independently with an interferometer. The algorithms that will be tested are a well-known Least Squares method, an iterative integration method and Janssen’s method. If successful, a spatial light modulator will be used in order to create more extreme cases of quickly varying wavefronts. [1] Janssen, A. J. E. M. "Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials." JOSA A 31.7 (2014): 1604-1613.

13 October 2016

OP: Best poster prize at EOSAM for Matthias Strauch

During the Annual meeting Matthias presented his poster on Surface harmonics on liquid lenses. He won an award which consists of a diploma and a honorarium of €500,00.

This content is being blocked for you because it contains cookies. Would you like to view this content? By clicking here, you will automatically allow the use of cookies.
This content is being blocked for you because it contains cookies. Would you like to view this content? By clicking here, you will automatically allow the use of cookies.

Our PI's

Our Lecturers