Biotechnology

Innovation is crucial to fulfil the potential of industrial biotechnology for sustainable production of fuels, chemicals, materials, food and feed. Similarly, scientific and technological advances in environmental biotechnology are needed to enable novel approaches to water purification, and ‘waste-to-product’ processes thus contributing to a circular economy. Increased fundamental knowledge encompassing enzymes, microorganisms and processes are essential for progress in this field. The Department of Biotechnology covers this research area and, based on new insights, selects, designs and tests new biobased catalysts, micro-organisms, and processes.

The department encompasses five research sections:

News

03 March 2016

A sustainable, good, affordable Hib vaccine for every child

With her doctoral research, TU Delft doctoral candidate Ahd Hamidi has made a major contribution to developing an innovative, scalable, affordable version of the Haemophilus influenzae (Hib) vaccine developed by Intravacc. This low-cost vaccine has now been used to protect 200 million children worldwide against Hib diseases such as meningitis, pneumonia, sepsis and otitis media. Hamidi has defended her dissertation at TU Delft on Thursday 3 March. Gram stain of Haemophilus influenzae type b bacterium Since the 1990s, children in high-income countries have been vaccinated on a large scale with Hib vaccine, which protects against Hib diseases such as meningitis. Since 1993, the Hib vaccine has also been included in the Dutch National Vaccination Programme. ‘The introduction of Hib-vaccine in developing countries was slow, mainly because of its relatively high price. Further, the local vaccine manufacturers didn’t had access to the technology needed for the production of the vaccine’, says Hamidi. In Intravacc’s Hib project she worked on process development, making a major scientific and social contribution to the availability of approved registered low-cost Hib vaccine. Her dissertation also discusses ways of optimising the process and thus reducing the cost price still further, an attractive option for both current or future partners want. Technology transfer and price reduction Hamidi’s research focused on process development and technology transfer to vaccine manufacturers in developing countries, and using mathematical models to improve process knowledge and investigate whether further process optimisation (cost reduction) is possible. In 2013, one of Intravacc’s partners marketed the Hib vaccine, as part of a combined vaccine including four others, through UNICEF at a price that was three times lower than that of existing Hib vaccines, thus bringing it within reach of large numbers of children. If a further price reduction can be achieved, the countries concerned would be able to bear the cost of the vaccine themselves in future. The knowledge gained in the Hib project has meanwhile been transferred successfully to local manufacturers in Indonesia, China (via Korea) and India. UNICEF and GAVI (the Global Alliance for Vaccines and Immunisation) are both involved in distributing the vaccine. Mathematical models Hamidi collaborated closely with experienced process designers and vaccine experts at such institutions as Intravacc (formerly the Netherlands Vaccine Institute (NVI) and the National Institute for Public Health and the Environment (RIVM)) and with various vaccine manufacturers in Indonesia, China, Korea and India. She used the Delft process design method and the knowledge of experts at TU Delft to develop the mathematical models. This enabled predictable models of the Hib process developed and performing sensitivity analyses on the Hib process, thus showing the impact of particular choices on cost. ‘This approach can help both current and future Hib partners to make choices, for example between the use of existing production facilities and building new ones, or the optimum scale of production,’ explains Hamidi. Other vaccines This rational Delft method of process design, says Hamidi, can also be used very efficiently to develop other vaccines. While the process was being developed it was decided to protect it with a patent: partners have a license and their production method protected. More information After graduating in Chemical Engineering (MSc) and Bioprocess Design (PDEng) at TU Delft, Hamidi started working for the forerunners of Intravacc as a process technologist and subsequently project manager and technology transfer expert. In her dissertation she shares the lessons learned from the Hib project so that similar technology transfer projects can benefit from the experience. The project will help to reduce child mortality, one of the UN Millennium Development Goals. Hamidi published in the renowned journal Biotechnology Process in January 2016: ‘ Process development of a new Haemophilus influenzae type b conjugate vaccine and the use of mathematical modeling to identify process optimization possibilities ’ Contact For more information about the dissertation 'Towards a sustainable, quality and affordable Haemophilus influenzae type b vaccine for every child in the world' , please contact A. Hamidi MSc, A.Hamidi@tudelft.nl / Ahd.Hamidi@intravacc.nl tel. +31 30 2742066 or Claire Hallewas (TU Delft Press Officer), c.r.hallewas@tudelft.nl , +31 6 4095 3085.

15 January 2016

Algae prove promising candidates for biodiesel production via 'survival of the fattest'

Smart methods for cultivating algae bring the efficient production of biodiesel using algae in sight. On Tuesday 19 January, Peter Mooij will obtain his doctorate at TU Delft for his work on this subject. CO 2 neutral There is huge scientific interest in the use of microalgae to produce carbohydrates and in particular lipids (fats), as lipids from microalgae can be converted into biodiesel. The amount of CO 2 released by the combustion of this biodiesel is equal to the amount of CO 2 that was previously extracted from the atmosphere by the microalgae. Thus the use of biodiesel does not lead to an increase in CO 2 in the atmosphere. 'Microalgae offer two huge advantages over other biological oil production platforms', says doctoral candidate Peter Mooij from TU Delft. 'Firstly, after cultivation, microalgae can be made up relatively largely of lipids. And secondly, relatively little fresh water and agricultural land is required to cultivate microalgae.' Survival of the fattest Mooij uses a smart method to cultivate suitable algae that is economically viable for large-scale algae production: survival of the fattest. The fattest algae survive. 'In the reactor we give a competitive advantage to the algae with the required characteristics, in this case the production of carbohydrates and fats. We start with a collection of 'ordinary' algae. During the day we provide them with light and CO 2 . This is enough for them to produce oil, however they are unable to divide. They need nutrients for cell division and they are only given these in the dark. To absorb these nutrients, the algae need energy and carbon. This means that only the fattest algae can divide, as they have stored these during the day. By removing some of the algae every day, the culture will eventually exist of only the fattest algae.' Starch 'All of our experiments led to systems in which carbohydrates (starch) formed the primary energy storage compounds', continues Mooij. 'So we have found a suitable environment in which carbohydrate production by algae is rewarded.' Unfortunately this environment is not yet selective for the storage of fats. The culture environment needs to be made even more specific to achieve this. 'But a greater understanding of the ecological role of lipids and carbohydrates in microalgae clears the way for the creation of lipid-specific selective environments. Rewarding a microalga for showing the desired behaviour by using a selective environment, one of the central concepts in my research, will be shown to be a valuable approach once there is a better understanding of the ecological role of lipids.' More information For further information please contact Peter Mooij tel. +31 6 - 483 826 35 or p.r.mooij@tudelft.nl or Wendy Batist, press officer TU Delft via tel. +31 - 15 - 27 884 99 or g.m.batist@tudelft.nl . Please read Peter Mooij's blogs on Faces of Science (only in Dutch).

News

28 May 2020

Awards for three researchers of AS

It's raining awards at the Faculty of Applied Sciences. No less than three researchers have been rewarded with various prizes over the past period. They are Ad van Well, Arthur Gorter de Vries and Jasmijn Hassing. Together with colleagues from 3mE, Ad van Well (Radiation Science & Technology) received the Vanadium Award for the best scientific article of 2019 in the fiel of vanadium research . The award is presented by the Institute of Materials, Minerals and Mining (IOM3) in Great Britain. The article stems from the HTM/NWO Nano-steel project, in which Ad van Well and his colleagues, especially PhD candidate Chrysoula Ioannidou, are researching a new type of steel that is both strong and malleable: pure ferrite reinforced with nanoparticles of vanadium carbide. Ex-researcher A rthur Gorter de Vries (Biotechnology) received the Westerdijk Award for the best dissertation of the year in the category Environmental & Applied Microbiology . This award is presented by the Royal Dutch Society for Microbiology (KNVM) and the Dutch Society for Medical Microbiology (NVMM). Gorter de Vries was frequently in the news before his promotion, among other things because he witnessed the emergence of a new gene in the lab and because of his discovery that all pilsner yeasts, the famous microorganisms that brewers produce hundreds of billions of litres of lager and other lager beers with every year, were created some 500 years ago in a one-off encounter between two types of yeast . Jasmijn Hassing, like Gorter de Vries from the group of Jean-Marc Daran (Biotechnology), received the Kiem Award. This prize is also awarded by the KNVM/NVMM, and is intended for excellent papers in which starting young microbiologists are the first authors. In order to qualify, the article must have been published in an internationally renowned journal in the past year. Hassing was awarded the prize for a paper on the production of 2-phenylethanol using yeast. 2-phenylethanol is an organic, aromatic compound that smells like roses and is widely used in the food and cosmetics industries.

30 April 2020

Investment of 14 million for better use of micro-organisms

Microorganisms can perform many processes useful to mankind, such as converting milk to cheese, keeping human and animal intestines healthy, and cleaning our water and environment. Together with Wageningen University & Research and Delft University of Technology, the Dutch Research Council (NWO) will invest almost 25 million euros in a research facility for investigating mixed microbial communities and their application. The research facility – called UNLOCK (UNLOCKing Microbial Diversity for Society) - consists of equipment and human resources that will be used to gather knowledge on micro-organisms effectively. Team-players Micro-organisms are natural team-players. They are essential for human health via the intestinal microbiome, and for processes like waste water treatment, soil fertilization for plant growth, and food preparation such as cheese or beer through fermentation. However, even though natural and man-made ecosystems are characterized by an enormous microbial diversity, research on microbial communities and their application in biotechnological processes historically has been conducted with a very limited number of strains isolated from these ecosystems. We are currently using no more than 1 per cent of the microbiological potential available in nature Ecosystem Besides that, research on micro-organisms usually focuses on a limited number of specific strains of organisms, while in nature micro-organisms always operate in ecosystems consisting of different species. ‘You could compare it to building a house’, says Robbert Kleerebezem, who is the Delft scientist involved in the project. ‘To build one, you need different experts, like masons, roofers, electricians and plumbers. You can pick out any one of them, and study what they are doing, but that won’t tell you anything about what the resulting house will look like.’ Eagerly awaited Wageningen and Delft have launched the new research facility UNLOCK to study mixed microbial cultures extensively. Various sub-areas of research will be integrated through UNLOCK. This development has been eagerly awaited by researchers studying mixed microbial communities. This integration will make significant scientific and societal breakthroughs possible. NWO's approval will make a 14.5 million euro funding available for the next decade, of which a third will go to TU Delft. Automated cultivation of ecosystems "In Delft we will be working on making automated systems in which we can cultivate ecosystems of micro-organisms in mixed compositions, and monitor them’, says Kleerebezem. ‘This makes UNLOCK a unique facility, because we will be able to do comparative studies on a large scale and in an efficient manner, in order to gain important insights into the interactions between micro-organisms’. New persepectives A total of 24.8 million euros will be invested in UNLOCK. Lead petitioner, Prof. Hauke Smidt is delighted with the approval. ‘This is fantastic. UNLOCK opens up entirely new perspectives for the discovery of new micro-organisms and ground-breaking research on mixed microbial communities’. UNLOCKing Microbial Diversity for Society In UNLOCK, Wageningen and Delft have joined forces towards full integration of all relevant fields of expertise in four complementary platforms: · The Biodiscovery platform (WUR-Microbiology) allows its users to discover and characterize new micro-organisms. In addition, there is a processing unit that allows for fully automated unlocking of biological samples for biomolecular analysis. · The Modular bioreactor platform (WUR-Environmental Technology) facilitates research for sustainable solutions to environmental issues, such as the degradation of (micro) pollutants, sustainable energy generation and reclaiming resources from complex waste streams. · With the Parallel Bioreactor platform (TU Delft -Biotechnology), users can simultaneously conduct dozens of experiments in bioreactors for comparative analysis on how process variables affect system development. · The FAIR data platform (WUR-Systems & Synthetic Biology) takes care of the storage, processing and interpretation of large quantities of data flowing from the experimental systems in a cloud-based infrastructure based on the FAIR principles (Findable, Accessible, Interoperable, Reusable). Large-scale Scientific Infrastructure NWO has allocated a total of 93 million euros to seven projects. The Ministry of Culture and Education makes funds available to NWO for the National Roadmap for a Large-scale Scientific Infrastructure. These funds enable the building and overhaul of essential research infrastructures. The awarded scientific infrastructures are of critical importance to innovative scientific research, and as a stimulus for economic and societal innovations across all scientific disciplines. Robbert Kleerebezem +31 15 2781091 r.kleerebezem@tudelft.nl