Biotechnology

Innovation is crucial to fulfil the potential of industrial biotechnology for sustainable production of fuels, chemicals, materials, food and feed. Similarly, scientific and technological advances in environmental biotechnology are needed to enable novel approaches to water purification, and ‘waste-to-product’ processes thus contributing to a circular economy. Increased fundamental knowledge encompassing enzymes, microorganisms and processes are essential for progress in this field. The Department of Biotechnology covers this research area and, based on new insights, selects, designs and tests new biobased catalysts, micro-organisms, and processes.

The department encompasses five research sections:

28 May 2020

Awards for three researchers of AS

It's raining awards at the Faculty of Applied Sciences. No less than three researchers have been rewarded with various prizes over the past period. They are Ad van Well, Arthur Gorter de Vries and Jasmijn Hassing. Together with colleagues from 3mE, Ad van Well (Radiation Science & Technology) received the Vanadium Award for the best scientific article of 2019 in the fiel of vanadium research . The award is presented by the Institute of Materials, Minerals and Mining (IOM3) in Great Britain. The article stems from the HTM/NWO Nano-steel project, in which Ad van Well and his colleagues, especially PhD candidate Chrysoula Ioannidou, are researching a new type of steel that is both strong and malleable: pure ferrite reinforced with nanoparticles of vanadium carbide. Ex-researcher A rthur Gorter de Vries (Biotechnology) received the Westerdijk Award for the best dissertation of the year in the category Environmental & Applied Microbiology . This award is presented by the Royal Dutch Society for Microbiology (KNVM) and the Dutch Society for Medical Microbiology (NVMM). Gorter de Vries was frequently in the news before his promotion, among other things because he witnessed the emergence of a new gene in the lab and because of his discovery that all pilsner yeasts, the famous microorganisms that brewers produce hundreds of billions of litres of lager and other lager beers with every year, were created some 500 years ago in a one-off encounter between two types of yeast . Jasmijn Hassing, like Gorter de Vries from the group of Jean-Marc Daran (Biotechnology), received the Kiem Award. This prize is also awarded by the KNVM/NVMM, and is intended for excellent papers in which starting young microbiologists are the first authors. In order to qualify, the article must have been published in an internationally renowned journal in the past year. Hassing was awarded the prize for a paper on the production of 2-phenylethanol using yeast. 2-phenylethanol is an organic, aromatic compound that smells like roses and is widely used in the food and cosmetics industries.

30 April 2020

Investment of 14 million for better use of micro-organisms

Microorganisms can perform many processes useful to mankind, such as converting milk to cheese, keeping human and animal intestines healthy, and cleaning our water and environment. Together with Wageningen University & Research and Delft University of Technology, the Dutch Research Council (NWO) will invest almost 25 million euros in a research facility for investigating mixed microbial communities and their application. The research facility – called UNLOCK (UNLOCKing Microbial Diversity for Society) - consists of equipment and human resources that will be used to gather knowledge on micro-organisms effectively. Team-players Micro-organisms are natural team-players. They are essential for human health via the intestinal microbiome, and for processes like waste water treatment, soil fertilization for plant growth, and food preparation such as cheese or beer through fermentation. However, even though natural and man-made ecosystems are characterized by an enormous microbial diversity, research on microbial communities and their application in biotechnological processes historically has been conducted with a very limited number of strains isolated from these ecosystems. We are currently using no more than 1 per cent of the microbiological potential available in nature Ecosystem Besides that, research on micro-organisms usually focuses on a limited number of specific strains of organisms, while in nature micro-organisms always operate in ecosystems consisting of different species. ‘You could compare it to building a house’, says Robbert Kleerebezem, who is the Delft scientist involved in the project. ‘To build one, you need different experts, like masons, roofers, electricians and plumbers. You can pick out any one of them, and study what they are doing, but that won’t tell you anything about what the resulting house will look like.’ Eagerly awaited Wageningen and Delft have launched the new research facility UNLOCK to study mixed microbial cultures extensively. Various sub-areas of research will be integrated through UNLOCK. This development has been eagerly awaited by researchers studying mixed microbial communities. This integration will make significant scientific and societal breakthroughs possible. NWO's approval will make a 14.5 million euro funding available for the next decade, of which a third will go to TU Delft. Automated cultivation of ecosystems "In Delft we will be working on making automated systems in which we can cultivate ecosystems of micro-organisms in mixed compositions, and monitor them’, says Kleerebezem. ‘This makes UNLOCK a unique facility, because we will be able to do comparative studies on a large scale and in an efficient manner, in order to gain important insights into the interactions between micro-organisms’. New persepectives A total of 24.8 million euros will be invested in UNLOCK. Lead petitioner, Prof. Hauke Smidt is delighted with the approval. ‘This is fantastic. UNLOCK opens up entirely new perspectives for the discovery of new micro-organisms and ground-breaking research on mixed microbial communities’. UNLOCKing Microbial Diversity for Society In UNLOCK, Wageningen and Delft have joined forces towards full integration of all relevant fields of expertise in four complementary platforms: · The Biodiscovery platform (WUR-Microbiology) allows its users to discover and characterize new micro-organisms. In addition, there is a processing unit that allows for fully automated unlocking of biological samples for biomolecular analysis. · The Modular bioreactor platform (WUR-Environmental Technology) facilitates research for sustainable solutions to environmental issues, such as the degradation of (micro) pollutants, sustainable energy generation and reclaiming resources from complex waste streams. · With the Parallel Bioreactor platform (TU Delft -Biotechnology), users can simultaneously conduct dozens of experiments in bioreactors for comparative analysis on how process variables affect system development. · The FAIR data platform (WUR-Systems & Synthetic Biology) takes care of the storage, processing and interpretation of large quantities of data flowing from the experimental systems in a cloud-based infrastructure based on the FAIR principles (Findable, Accessible, Interoperable, Reusable). Large-scale Scientific Infrastructure NWO has allocated a total of 93 million euros to seven projects. The Ministry of Culture and Education makes funds available to NWO for the National Roadmap for a Large-scale Scientific Infrastructure. These funds enable the building and overhaul of essential research infrastructures. The awarded scientific infrastructures are of critical importance to innovative scientific research, and as a stimulus for economic and societal innovations across all scientific disciplines. Robbert Kleerebezem +31 15 2781091 r.kleerebezem@tudelft.nl

News

15 December 2020

Five 20k grants for cross-campus bioengineering research projects

In response to the first call for bioengineering research proposals, Delft Bioengineering Institute received a stunning amount of thirteen interfacultary proposals. After a thorough peer review process, eight very good to excellent proposals surfaced. From these, MT BEI has selected the five winning projects listed below. We want to thank all BEI PIs for submitting proposals and all reviewers for their efforts, knowing they were all quite busy already. We hope that 2021 will see the start of a second five-year term for the institute, so we can continue to support these promising cross-campus collaborations! >> Biochars for reducing methane emissions Methane has a high global warming potential, and landfill is one of the largest contributors of global human-caused methane emissions. Methane treatment using engineered microbial oxidation systems is one of the ways to reduce these emissions. Biochars, carbon-rich materials produced from sources such as municipal solid wastes, wastewater sludge and wood, have gained interest in the waste management industry as media to enhance control of landfill gas emissions. In this project, led by Julia Gebert of Geoscience & Engineering (CiTG), BEI PIs of four TU Delft faculties team up to investigate the potential of biochars for enhancing microbial methane oxidation in biofilters. Project title: Effects of biochar on the performance of microbial CH4 oxidation in biofilters to reduce landfill gas emissions. BEI PIs: Julia Gebert (CiTG/GSE), Wiebren de Jong (3mE/P&E), Aljoscha Wahl (TNW/BT), Martin Pabst (TNW/BT), Thomas Abeel (EWI/Bioinformatics) >> Regenerating neuronal circuits using ultrasound People suffering from neurodegenerative disorders such as Alzheimer’s, Parkinson’s Disease and Multiple Sclerosis, have impaired neuronal circuits. Generation of new neuronal circuits by using a patient’s own stem cells may prove helpful in treating the disease. One of the difficulties in inducing neurons from stem cells, is the low efficiency rate we are able to achieve so far. In this project, BEI PIs Tiago Costa of Microelectronics (EWI) and Dimphna Meijer of Bionanoscience (TNW) join forces to explore the use of ultrasound for effectively building active neuronal networks from stem cells. Project title: SoundCircuit: Regeneration of neuronal circuits using ultrasound BEI PIs: Tiago Costa (EWI/ME), Dimphna Meijer (TNW/BN) >> Medical implants to investigate cell mechanobiology In order to study the cell’s behaviour and differentiation, we need to be able to measure the mechanical, electrical and biochemical signals that are dynamically transmitted throughout the cells. This requires the creation of biomaterial models equipped with different sensor types. In this project, BEI PIs Mohammad J. Mirzaali of Biomechanical Engineering (3mE) and Massimo Mastrangeli of Microelectronics (EWI) will team up to design, fabricate and test the proof-of-concept for medical implants equipped with force sensors that can reach a sensitivity level of one micronewton, so the mechanobiology of cells can be effectively investigated. Project title: Sixth Sense Biomaterials BEI PIs: Mohammad J. Mirzaali (3mE/BM), Massimo Mastrangeli (EWI/ME) >> Advanced cellular nanoimaging Structural biology has been essential in understanding the cell. Studying the dynamics of biological systems requires advanced imaging tools, particularly those that can bring both high spatial and temporal resolutions. In this project, BEI PIs Chirlmin Joo of Bionanoscience (TNW) and Carlas Smith of Delft Centre for Systems and Control (3mE) will join forces to develop a novel methodology for fast absolute FRET distance measurement, taking advantage of smFRET (fast but biased molecular dynamics) and localization microscopy (unbiased but static localization). Project title: New structural biology by integrating nanoscopy and single-molecule Forster resonance energy transfer BEI PIs: Chirlmin Joo (TNW/BN), Carlas Smith (3mE/DCSC) >> 3D-printing bacterial electrodes for CO2 conversion In order to achieve a sustainable future, we need to use abundant molecules such as CO2, water and renewable electricity to create our organic chemicals and fuels. Microorganisms have the ability to enable upgrading of CO2 by microbial electrosynthesis. In this project, Ludovic Jourdin of Biotechnology (TNW) and Kunal Masania of the Shaping Matter Lab (LR) will team up to explore strategies to shape carbon electrodes into hierarchical porous electrodes for microbial electrosynthesis and study the role of hierarchical porosity on microbial and electrochemical activity. Project title: BACTRODE: Hierarchical 3D-printing of bacterial electrodes for breakthrough in CO2 conversion BEI PIs: Ludovic Jourdin (TNW/BT), Kunal Masania (LR/SML)

04 December 2020

In Memoriam: Prof.dr.ir. Herman van Bekkum (1932 – 2020)

It is with great sadness that I inform you of the passing away of our esteemed professor emeritus Herman van Bekkum on 30 November 2020. Herman van Bekkum was Rector Magnificus of Delft University of technology from 1975 to 1976 and worked at TU Delft from 1955 to 1998. During this time, he worked for Shell for a brief period between 1959 and 1961, but he ultimately chose to make TU Delft his home, and a very successful choice that was. After his retirement in 1998 he remained active in our faculty for many years, both within Chemical Engineering and the catalysis community. He meant a lot to the university, especially to the Faculty of Applied Sciences. Herman van Bekkum was a versatile chemist with a near limitless zest for work. He made major contributions to science, especially in the field of catalytic applications of zeolites and ordered mesoporous materials and non-food applications of sugars. More importantly, his infectious enthusiasm conveyed his love of organic chemistry to colleagues and students alike, and enabled him to inspire great achievements in them. This quality was rewarded in 1996 when TU Delft named him a Professor of Excellence. Herman van Bekkum always sought co-operation with industry, and managed to secure extensive funding that he could put towards satisfying his enormous creativity and curiosity. He performed various managerial positions within and beyond TU Delft. Within TU Delft he served as Rector Magnificus in the 1975-1976 academic year, and beyond the confines of the university his positions included that of president of the Royal Netherlands Chemical Society (KNCV). From 1995, he was a member of the Royal Netherlands Academy of Arts and Sciences (KNAW), an important academic distinction. In 1980, he was appointed an honorary member of the Technologisch Gezelschap (TG) study association. Enthusiasm, enormous commitment, efficiency in an environment that sometimes verged on the chaotic, and great mental speed and agility characterised his unique personality. Staff members at the faculty of Applied Sciences often had their work cut out keeping up with him in the corridors. And he never failed to track down the exact documents he needed in his crammed study. Herman van Bekkum will be in our memory always, a memory that will be cherished by all at the faculty who had the pleasure of meeting him or working with him. Our sincerest condolences go out to his family. Paulien Herder, ChemE Departmental Director