Stories of Aerospace Engineering

Lees verhalen van onderzoekers en studenten aan de faculteit Luchtvaart- en Ruimtevaarttechniek en ontdek de wetenschappelijke vragen waaraan zij werken en de oplossingen waarmee ze komen.

Corrosie bestrijden met algen

Als we algen, en met name diatomen, kunnen gebruiken om milieuvriendelijke anticorrosiecoatings nog efficiënter te maken, kunnen we allerlei constructies – denk aan vliegtuigen, treinen, pantserwagens en dergelijke – beschermen zonder giftige en dure materialen te gebruiken. Om metalen constructies te beschermen tegen corrosie wordt veel gebruikgemaakt van coatings. Die coatings bieden passieve en actieve bescherming, bijvoorbeeld als barrière tegen corrosieverwekkers of als corrosie-inhibitoren carriers (dragers). In coatings worden al bijna honderd jaar corrosie-inhibitoren op basis van chroom VI toegepast om de beschermende functie ook na aantasting in stand te houden. Zulke deeltjes werken efficiënt maar zijn zeer giftig en kankerverwekkend. Daarom is het gebruik van chromaten voor veel toepassingen verboden. In de veeleisende luchtvaart- en ruimtevaartsector zou dit ook worden doorgevoerd, maar het verbod is meerdere keren uitgesteld vanwege een gebrek aan goede alternatieven. Een mogelijk alternatief is het gebruik van algen, meer specifiek de exoskeletten van zogenaamde diatomen. In 2015 is universitair docent Santiago Garcia, verbonden aan de onderzoeksgroep Novel Aerospace Materials, een project gestart om het gebruik van exoskeletten van diatomen (ook wel frustule genoemd) ter bescherming van lucht- en ruimtevaartconstructies te onderzoeken. Garcia: “In 2015 hebben we het eerste proof of concept opgesteld om aan te tonen dat algen kunnen worden gebruikt voor actieve corrosiebescherming en zelfherstel. Ik ben ervan overtuigd dat dat enorme gevolgen kan hebben.” Waarom frustule van diatomen? Er is al een aantal veelbelovende corrosiebeschermers die mogelijk chromaat zouden kunnen vervangen. Uit onderzoek is echter gebleken dat er ongewenste reacties kunnen optreden tussen deze inhibitoren en de omringende coatingmatrix, waardoor de efficiëntie van de inhibitoren wordt verminderd. Eén manier om dat te voorkomen is door de inhibitoren onder te brengen in carriers. Het gebruik van een carrier vermindert de interactie tussen de inhibitoren en hun omgeving. Bovendien kan de carrier worden gebruikt om het vrijkomen van de corrosie-inhibitoren te reguleren. Een dergelijke aanpak kan theoretisch een veel efficiëntere anticorrosiecoating opleveren. Frustule (diatoom exoskeletten) van het type Aulacoseira Frustule kunnen dienstdoen als carrier op microformaat. Waarom zijn ze met hun specifieke architectuur zo geschikt voor deze toepassing? Promotieonderzoeker Paul Denissen licht toe: “Frustule zijn holle microdeeltjes van silica met nanoporiën, ook wel ‘pill-boxstructuren’ genoemd. Ze hebben een celwand gemaakt van silica, met een sterke structuur vol poriën. Gelukkig voor ons zijn die poriën groot genoeg om in beide richtingen corrosieremmers(corrosie-inhibitor) door te laten.” Bestudering van afzonderlijke deeltjes Nadat Paul Denissen met een scriptie over dit onderwerp zijn master had behaald, is hij in januari met zijn promotieonderzoek begonnen. Daarvoor houdt hij zich bezig met het isoleren en bestuderen van afzonderlijke frustuledeeltjes met behulp van geavanceerde karakteriseringstechnieken. Garcia: “Frustule lopen zeer uiteen in vorm, grootte en poreusheid (dit noemen we de architectuur). Er moeten speciale tests worden uitgevoerd om vast te stellen hoe afzonderlijke deeltjes zich gedragen en hoe we dat gedrag kunnen beïnvloeden. Kort gezegd willen we: De mogelijkheden verkennen van het gebruik van diatoomexoskeletten en aantonen dat deze kunnen worden gebruikt voor de opname en gecontroleerde vrijgave van functionele soorten in coatings zoals corrosie-inhibitoren; Evalueren wat de effecten van de architectuur en geometrie zijn op het vrijkomen en de efficiëntie van corrosie-inhibitoren; Het oppervlak van diatoomexoskeletten modificeren en bepaalde triggers, zoals een veranderende pH-waarde, gebruiken om de vrijgave van corrosie-inhibitoren te reguleren. Als we daar eenmaal inzicht in hebben, kunnen we op basis van ruimschoots verkrijgbare grondstoffen coatings maken die op het juiste moment precies de benodigde hoeveelheid corrosie-inhibitoren vrijgeven.” Corrosiebeschermingsmechanisme van coatings met diatoomexoskeletten waaraan inhibitoren zijn toegevoegd Natuurlijke oplossing voor industrieel probleem De NovAM-groep onderzoekt momenteel specifiek de extra sterke aluminiumlegering 2024, die bij de productie van lucht- en ruimtevaartonderdelen wordt gebruikt en die bijzonder gevoelig is voor corrosie. De methode kan echter worden gebruikt om alle metaallegeringen te beschermen. Denissen legt uit dat dit zelfherstellende mechanisme in de toekomst ook voor andere toepassingen kan worden gebruikt: “Elke inhibitor heeft bepaalde kenmerken, die een bepaald effect hebben als de inhibitor in een carrier is ondergebracht. Als we de afzonderlijke deeltjes eenmaal hebben gekwantificeerd en hun gedrag hebben gemeten, kunnen we bepalen welk soort deeltje het meest geschikt is voor een bepaalde toepassing, bijvoorbeeld in de lucht- en ruimtevaart.” Als we algen, en met name diatomen, kunnen gebruiken om milieuvriendelijke anticorrosiecoatings nog efficiënter te maken, kunnen we allerlei constructies – denk aan vliegtuigen, treinen, pantserwagens en dergelijke – beschermen zonder giftige en dure materialen te gebruiken. Garcia: “Diatomen komen vrijwel overal voor waar water is. Diatomen planten zich voort met sporen en ongeslachtelijk door middel van tweedeling, en groeien bijzonder snel. Frustule gebruiken voor anticorrosiecoatings zou niet alleen gezonder zijn in vergelijking met de huidige synthetische middelen, maar daarnaast ook opschaalbaar, duurzaam en betaalbaar. Dit nieuwe concept sluit aan op ons lopende onderzoek naar zelfherstellende polymeersystemen en nieuwe functionele micro- en nanovezels voor composieten en coatings gemaakt van algen.”

Lijm ten behoeve van de kunst

Onlangs ontving Hans Poulis (Hechtingsinstituut TU Delft) financiering van NWO voor zijn onderzoeksvoorstel op het gebied van lijmveroudering. De voorstellen zijn gehonoreerd binnen de eerste financieringsronde van het Netherlands Institute for Conservation, Art and Science (NICAS). Poulis: “Voor het eerst gaat het Hechtingsinstituut een nieuwe lijmsoort ‘from scratch’ ontwikkelen.” Op dit moment wordt er bij de restauratie van kunstvoorwerpen gebruik gemaakt van allerlei verschillende standaard lijmsystemen. Synthetische lijmen zijn soms stabieler dan natuurlijke lijmen, maar toch vaak niet helemaal geschikt. Ze zijn niet specifiek ontwikkeld voor conserveringsdoeleinden en hebben daarom nooit alle juiste eigenschappen. We weten dus ook meestal niet hoe ze zich in de tijd gedragen, chemisch, nog mechanisch. Met andere woorden, hoe de stoffen verouderen in de tijd onder invloed van de omgeving. Zo kunnen ze bijvoorbeeld vergelen of kunnen de kleefeigenschappen veranderen. Gat in de markt Het is een kleine markt, dus het is voor bedrijven commercieel gezien niet interessant genoeg. Voor het verdoeken van schilderijen wordt nog wel relatief veel lijm gebruikt, maar voor het terug plakken van kleine schilfertjes verf is maar heel weinig lijm nodig. Het Hechtingsinstituut gaat zich richten op dat laatste proces, en dan met name kijken naar achterglas schilderijen en olieverf- en gouache composities. Deze werken zijn representatief voor vele werken die op korte termijn gerestaureerd zullen moeten worden als we ze willen behouden voor komende generaties. Het is niet rendabel voor een bedrijf om hiervoor een specifieke lijmsoort te ontwikkelen. Poulis: ‘Allereerst gaan we met twee post-doc onderzoekers het veld in. In maart wil ik een brainstormsessie organiseren met mensen die al lang in het vak zitten, inclusief conservatoren. Zij weten het beste aan welke eisen de lijm precies moet voldoen. Aan de hand van die sessie gaan we de ingang van het onderzoek definiëren. Het gaat dan met name om de vraag: welke chemische basisstof ga ik gebruiken? Dat is het hoofdingrediënt. Vervolgens gaan we verschillende mengsels maken en het receptuur al naar gelang de eisen aanpassen. Middels diverse laboratoriumtesten gaan we uitzoeken hoe de mengsels zich gedragen, initieel en in de tijd.’ Van test naar product Door verouderingstesten uit te voeren moeten we erachter komen hoe mengsels zich gedragen na een x aantal jaren. Met behulp van lichtexpositie testen kunnen we kijken hoe zo’n stof vergeelt na verloop van tijd. Daarvoor kunnen Xenon lampen worden gebruikt. Die genereren UV licht en zetten daarmee een versneld verouderingsproces in. Poulis: ‘Uiteindelijk testen we de lijmen ook op kunstwerken (mock-ups). In de praktijk weet je natuurlijk niet exact wat er met de lijm zal gebeuren, omdat er zoveel omstandigheden zijn die er invloed op kunnen hebben. Daarnaast zijn er geen data aanwezig die versnelde verouderingstesten kunnen koppelen aan de werkelijke omstandigheden.’ Het doel is om na twee jaar een lijm te hebben ontwikkeld die geschikt en langdurig stabiel is als het gaat om mechanisch evenals visueel gedrag. Bij het consortium voor dit project zit ook een commercieel bedrijf dat gespecialiseerd is in het maken van kleine hoeveelheden lijm. Zij zouden eventueel de productie op zich kunnen nemen. Poulis: ‘En wie weet, misschien komt er nog wel een spin-off uit voort.’ --- Het NICAS is een interdisciplinair onderzoekscentrum dat zich richt op het behoud van cultureel erfgoed. Het betreft een samenwerking van de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), het Rijksmuseum, de Universiteit van Amsterdam (UvA), de Rijksdienst Cultureel Erfgoed (RCE), en de Technische Universiteit Delft (TU Delft). Klik hier om de website van het NICAS te bezoeken.

Gedrag van vliegtuigen tijdens eindnadering

Promovendus Floris Herrema (Air Transport and Operations) heeft onlangs de SESAR Young Scientist of the Year Award gewonnen met zijn masterscriptie ‘Compression on final approach and Time Based Separation (TBS) for Optimised Runway Delivery’. Zijn werk heeft directe gevolgen voor de kennis over TBS (‘separatie op basis van tijd’) en de veiligheid van dit systeem, en voor het TBS-systeem dat wordt gebruikt op het Londense vliegveld Heathrow: het eerste vliegveld ter wereld met TBS. “Ik had nooit gedacht dat ik de SESAR Young Scientist of the Year Award zou winnen, dus ik voelde me bij de finale in Bologna in Italië eigenlijk heel ontspannen. Single European Sky Air Traffic Management Research (SESAR) is een Europees instituut dat zich bezighoudt met onderzoek naar luchtverkeerbeheer. Ik had die dag dus 400 mensen tegenover me die zich bezighouden met luchtverkeerbeheer.” Gedrag van vliegtuigen voorspellen “Het doel van mijn onderzoek was om de potentiële verbeteringen in compressie tijdens de eindnadering, bij gebruik van Time Based Separation (TBS), te kwantificeren en modelleren. TBS als concept was al wel bekend, maar het was te gecompliceerd om daadwerkelijk te implementeren. Ik heb een nieuw luchtsnelheidprofiel ontwikkeld, de Floris Friso Herrema (FFH)-tool, waarmee we het gedrag van het vliegtuig en TBS beter kunnen voorspellen. Dit is heel relevante informatie voor luchtverkeersleiders. Het systeem is nu gemakkelijker te begrijpen en dus ook te implementeren. Vorig jaar is het geïmplementeerd op London Heathrow Airport, dat nu de eerste TBS-luchthaven ter wereld is.” De voordelen “Het belangrijkste voordeel behalen we bij sterke tegenwind. Het gaat nog om schattingen op basis van Heathrow, maar we verwachten dat we bij sterke tegenwind twee extra landingen per uur kunnen uitvoeren. Bovendien zal TBS naar verwachting 80.000 minuten vertraging per jaar besparen. De voordelen voor luchtvaartmaatschappijen kunnen oplopen tot 10 miljoen euro per jaar.” Impact “Ik was uitdrukkelijk op zoek naar een scriptieonderwerp dat impact zou kunnen hebben. Daarom wilde ik ook van begin af aan samenwerken met EUROCONTROL. Ik heb een stage bij EUROCONTROL gecombineerd met mijn masterproject. Theorieën zijn er namelijk om in praktijk te brengen. Daarom vind ik het nu ook zo mooi om in mijn promotieonderzoek samen te werken met Ricky Curran en Dries Visser, beiden van Air Transport and Operations. Bij alles wat ik doe vragen zij: wat is het maatschappelijk en wetenschappelijk belang? De feedback en het advies van de universiteit en van EUROCONTROL verschillen enigszins, en de combinatie van beide gezichtspunten voegt extra waarde toe. Ik zou graag in beide werelden een rol willen blijven spelen en als actieve schakel tussen de twee willen fungeren.” Toekomst “Mijn promotieonderzoek, ‘Big data analyses and machine learning at airports to support decision making’, vordert behoorlijk. Ik werk aan toepasbare technieken voor machinaal leren en het doel is om het resultaat te implementeren bij alle grote luchthavens in Europa. Ik vind het geweldig om hieraan te werken. Op dit moment proberen we mijn onderzoek in te bedden in een Europees onderzoeksproject. We zijn druk bezig met enkele onderzoeksvoorstellen in het kader van Horizon 2020 om hier financiering voor te krijgen. Het zou natuurlijk fantastisch zijn als dat zou lukken.” Het belangrijkste voordeel behalen we bij sterke tegenwind.

Onderzoeksvragen voor windenergie

Kunnen supergekoelde generatoren de efficiëntie van windturbines op zee verhogen? Hoe kunnen ‘big data’ uit sensoren op windturbines bijdragen aan het onderhoud van windparken? Hoe bereken je de effecten van golfslag op de werking van drijvende windturbines? Kunnen we tot windvoorspellingen komen op windturbinehoogte? Is het een goed idee om een offshore windturbine te combineren met een generator voor golfslag- of getijdenenergie? Dit zijn enkele van de vragen die voorkomen in de wetenschappelijke agenda voor windenergie die hoogleraar Windenergie aan de TU Delft, Gijs van Kuik, en zijn collega Joachim Peinke van de Carl-von-Ossietzky Universiteit in Oldenburg, Duitsland, samenstelden voor de European Academy of Wind Energy. Het zijn fundamenteel-wetenschappelijke vragen, aangeleverd door wetenschappers uit elf verschillende vakgebieden, van materialen tot energieconversie en van milieueffecten tot aerodynamica. Van Kuik: “De meeste agenda’s voor windenergie, bijvoorbeeld die van de International Energy Agency, zijn gericht op technologie die op de korte termijn kan worden toegepast, bijvoorbeeld om de kosten van windenergie te verlagen. Deze agenda kijkt ver vooruit.” Waarom? “De grootste windturbines van nu zijn de grootste roterende machines op aarde, windturbines opereren in toenemende mate in grote windparken op zee, het aandeel windenergie in de mondiale energiemix neemt toe. Deze toenemende schaalgrootte brengt nieuwe wetenschappelijke vragen met zich mee. Als wetenschappers zijn we uiteraard nieuwsgierig naar de antwoorden. Maar de belangrijkste reden om deze lange termijn vragen te beantwoorden is dat dit kan leiden tot ‘gamechangers’, radicaal nieuwe technologie die het mogelijk maakt windenergie op grote schaal mee te nemen in de energiemix.” Paper nodigt uit tot discussie Onder de vlag van de European Academy of Wind Energy hebben TU Delft hoogleraar windenergie Gijs van Kuik en zijn collega Joachim Peinke uit Oldenburg deze lange termijn wetenschapsagenda voor windenergie samengesteld. Onderzoekers uit elf verschillende vakgebieden uit Europa en de VS leverden hiervoor hun fundamenteel-wetenschappelijke vragen aan. De agenda verschijnt eerst als wetenschappelijk paper met de titel ‘Long-term research challenges in wind energy’ in het nieuwe wetenschappelijke open access journal Wind Energy Science. Later dit jaar komt de agenda ook als boek beschikbaar. Gijs van Kuik: “Met dit paper willen we laten zien dat windenergie meer is dan een ingenieursdiscipline met korte termijn toepassingen. Antwoorden op fundamenteel -wetenschappelijke vraagstukken kunnen de windenergie verder helpen.” Het paper is vooral bedoeld om de discussie onder vakgenoten te openen. Van Kuik: “Ik hoop dat veel lezers het met ons oneens zijn en dat we daardoor een levendige academische discussie krijgen.” Later in 2016 verschijnt de wetenschapsagenda windenergie van de EAWE ook in boekvorm bij Springer. Meer informatie Voor meer informatie kunt u contact opnemen met professor Gijs van Kuik, TU Delft op tel. 015 - 27 84980 of g.a.m.vankuik@tudelft.nl. Artikel gepubliceerd in Wind Energy Science op 9 februari 2016: Van Kuik, G.A.M., J. Peinke et.al. ‘Long-term research challenges in wind energy’ . Over het nieuwe journal Wind Energy Science: www.wind-energ-sci.net .

Met lasers op verkenningstocht door ons zonnestelsel

Hoe kunnen we meer leren over hoe planeten en manen in elkaar steken? Dominic Dirkx promoveerde onlangs op een nieuwe methode om de afstand tussen de aarde en satellieten om of op andere planeten en manen te meten tot op de millimeter tot centimeter nauwkeurig. Op dit moment gaat dat nog ongeveer tot op de meter, met gebruik van radio-meting. Een techniek die nu wordt gebruikt voor het meten van de afstand tot aardse satellieten (tot op enkele millimeters nauwkeurig), tracking met lasers, heeft Dirkx geëxtrapoleerd naar interplanetaire afstanden. Zijn onderzoek laat vooral zien dat het zeer van belang is dat we niet alleen de afstandsmetingen heel nauwkeurig uitvoeren. Ook andere metingen zullen verbeterd moeten worden om de laser tracking zo goed mogelijk te benutten. Als we dat doen, kan deze methode een belangrijke rol spelen in het verkennen van ons zonnestelsel. Dit klinkt misschien voor de hand liggend, maar het onderzoek van Dirkx heeft laten zien dat het echt significante impact heeft op de resultaten als er aandacht wordt besteed aan het nauwkeuriger maken van lasermetingen én metingen zoals die van een magnetisch veld, vorm, of de seismische activiteit op een planeet. Invloed van de klok op aarde Voor het verbeteren van de lasermeting vroeg Dirkx zich af hoe de klok die wij hier op aarde gebruiken invloed heeft op de uiteindelijke metingen. Dirkx: ‘Als je afstand meet, meet je in feite de beweging. Je gebruikt een klok op aarde en een klok in de ruimte om te meten hoe lang een laser puls onderweg is. Omdat je de snelheid van het licht weet, kijk je dus waar een satelliet op het ene en op het volgende moment is. Dat houdt in dat als je er een nanoseconde naast zit, dat zomaar dertig centimeter kan schelen.’ Als we kijken naar hoe iets beweegt, kijken we naar hoe de zwaartekracht werkt en zo leren we van de omgeving. Stel dat we meten hoe een satelliet om de planeet Mars vliegt, dan kunnen we zo meer te weten komen over het inwendige van die planeet. Op die manier is bijvoorbeeld vorig jaar ontdekt (samen met andere metingen) dat er onder het oppervlak van Enceladus, een maan van de planeet Saturnus, een oceaan is. Een bijzondere verdediging Dirkx promoveerde nominaal en cum laude. David Smith (MIT) vond het een reis naar Delft waard om zijn verdediging bij te wonen als commissielid. Smith is gespecialiseerd in zowel laser ranging als planetaire wetenschappen. Dirkx: ‘ In het verleden heeft David Smith eerder samengewerkt met collega’s uit onze onderzoeksgroep en ik had hem al eerder ontmoet bij conferenties. Hij is zo iemand bij wie je je als promovendus acuut geïntimideerd voelt – een grote naam met een ellenlange lijst aan belangrijke paperpublicaties. Ik vond het geweldig om hem erbij te hebben.’ Dirkx: ‘Wat voor tijdens het promoveren erg geholpen heeft, is dat ik in het Europese FP7 ESPaCE project heb mogen werken. Hierdoor heb ik een groot netwerk op kunnen bouwen en heb ik altijd met veel mensen kunnen sparren over mijn onderzoek. Mijn tip voor andere promovendi is dan ook om veel met mensen te praten. Niet alleen binnen je eigen onderzoeksgroep, maar vooral ook daarbuiten.’