Attitude Determination and Control System (ADCS)

The Attitude Determination and Control System (ADCS) is a crucial subsystem of a spacecraft. It provides pointing accuracy and stability of the payloads and antennas as critical parts of the S/C operation and the mission success. The Space Engineering department is well recognized for its work on the design, development and launch of educational nano-satellites. The study and development of a complete ADCS system started within the Delfi-C3 CubeSat program being a passively controlled S/C without 3-axis stabilization. A full blown ADCS system including 3-axis pointing control and stabilization was developed within the Delfi-N3Xt CubeSat program. Key areas are hardware development and characterization (reaction wheels, sunsensors, magnetorquers and magnetometers are developed within the chair SSE), attitude estimation algorithms (see also the ESEO project), control loop design, system development and testing. The development of micro-thrusters, a reaction ball subsystem, water-propelled micro-resistojets, mostly based on MEMS technologies and huge momentum bias wheels with frictionless magnetic bearings are part of the R&D development scope. The MEMS components of these thrusters are manufactured through a collaboration with the TU Delft’s Else Kooi Lab.

The study and development of the ADCS is SE related to small space instruments and sensor systems development for this class of small satellites (CubeSats, PicoSats). In fact it is one of the most important short-medium term objectives in our current roadmap. A strong corporation with the Dutch high tech space scene is present through companies and institutes such as: TNO Space, Airbus Defence Systems (ADS) Leiden, ISIS and Hyperion Technologies B.V., etc.

The following topics reflect the current scope of ADCS related research activities:

Fig-1 The SHAPE 6U EO Cubesat for VLEO EO in the thermosphere
Fig-2 Deployable Space Telescope concept with 25 cm resolution at H = 500 km, 5 km swath width at 500 km altitude, 400 dm3 volume, 75 kg mass, panchromatic (450-650 nm) and SNR ~ 125