Imaging Physics

The department of Imaging Physics  develops novel instrumentation and imaging technologies. We are driven by our scientific curiosity and problem oriented nature in research with a strong connection to industry and to educate future leaders in the field of imaging science.

The scientific staff of the department is formed by independent Principle Investigators or Educators.

18 oktober 2016

Two Imphys papers published in the same issue of Optics Express

In the Optics Express issue 21 two publications of ImPhys are published. One from CPO and one from QI. 1.) "Image resolution and deconvolution in optical tomography" by Jelle van der Horst and Jeroen Kalkman 2.) "Time-resolved cathodoluminescence microscopy with sub-nanosecond beam blanking for direct evaluation of the local density of states" by Robert J. Moerland, I. Gerward C. Weppelman, Mathijs W. H. Garming, Pieter Kruit, and Jacob P. Hoogenboom.

14 oktober 2016

OP: Thomas van den Hooven started his BSc project

Thomas has started his BSc project which focusses on the modelling a computational hyperspectral imaging device. His supervisors are Paul Urbach, Yifeng Shao and Matthias Strauch. Most hyperspectral imaging devices ‘scan’ their object in wavelength: a picture is taken for every wavelength and later this data is merged. This device will rather scan the hyperspectral electromagnetic field emitted by the object using a spatial light modulator (SLM): one moving point will scan along the SLM and another point will be used as a reference. The light transmitted through the SLM will then interfere, making it possible to obtain relative phase and amplitude information for each wavelength at each point of the SLM. The advantages of this method are evident, using a fast SLM, the needed interference patterns can be captured relatively quick. Also, the method can in theory process a lot of wavelength at once. Unfortunately, the method also requires a lot of processing power. The goal of this project is to find of this method is feasible to be used as an alternative in hyperspectral imaging.

31 oktober 2016

OP: Erik Swarts started his BSc project

Erik started his BSc project on analytical solution for dipoles in multilayer systems". His supervisors are Aurele Adam & Johan Dubbeldam. The goal of the project project is to find a general analytical solution for the electromagnetic field inside dipole-doped one-dimensional optical multilayer systems, and also to calculate reflection and transmission coefficients of incoming electromagnetic waves. The resulting algorithm should provide a solution for a system having arbitrarily many layers and dipoles inside them. A numerical matrix solution for this problem already exists, but an analytical solution can provide overall stability and significantly faster calculations. The research is based on an existing technique, that uses extended Fabry-Perot equations to calculate transmission and reflection in regular (no dipole containing) multilayer systems, that will be extended to calculate what we need. Once this solution is retrieved, the next goal is to optimise this alghoritm for even faster calculation. The results of this project could probably be used to enhance the performance of optical multilayer coatings or small light emitting devices. Since the computational properties of the algorithm will be better, these improvements can be done more efficiently.

31 oktober 2016

OP: Pictures official launch Dutch Optics Centre - 19th October 2016

Please find below some pictures taken during the official launch of the Dutch Optics Centre (DOC). Including the signing of the cooperation agreement by Prof. dr. Ir. Jos Keurentjes, CTO of TNO and Prof. dr. Karel Luyben of the Executive Board of TU Delft.

Dit onderdeel wordt voor u geblokkeerd omdat het cookies bevat. Wilt u deze content (en anderen) alsnog bekijken? Door hier op te klikken geeft u alsnog toestemming voor het plaatsen van cookies.
Dit onderdeel wordt voor u geblokkeerd omdat het cookies bevat. Wilt u deze content (en anderen) alsnog bekijken? Door hier op te klikken geeft u alsnog toestemming voor het plaatsen van cookies.

Our PI's

Our Lecturers

/* */